内蒙古师范大学学报(自然科学汉文版)
內矇古師範大學學報(自然科學漢文版)
내몽고사범대학학보(자연과학한문판)
JOURNAL OF INNER MONGOLIA NORMAL UNIVERSITY(NATURAL SCIENCE EDITION)
2015年
2期
240-244
,共5页
网络流量%回声状态网络%小波分解%小波回声状态网络
網絡流量%迴聲狀態網絡%小波分解%小波迴聲狀態網絡
망락류량%회성상태망락%소파분해%소파회성상태망락
network traffic%echo state network%wavelet decomposition%wavelet echo state network
网络流量是一种复杂、多变的非线性混沌系统,为了获得更加理想的网络流量预测结果,针对传统回声状态网络的不足,提出一种小波回声状态网络流量预测模型(WESN)。首先采用小波分解将网络流量数据分解成高频和低频,然后将高频和低频的数据同时输入回声状态网络进行学习,从而解决了 ESN 模型中存在的病态矩阵问题,最后对模型性能进行仿真测试。结果表明,WESN 可以很好地拟合网络流量变化,具有一定的实际应用价值。
網絡流量是一種複雜、多變的非線性混沌繫統,為瞭穫得更加理想的網絡流量預測結果,針對傳統迴聲狀態網絡的不足,提齣一種小波迴聲狀態網絡流量預測模型(WESN)。首先採用小波分解將網絡流量數據分解成高頻和低頻,然後將高頻和低頻的數據同時輸入迴聲狀態網絡進行學習,從而解決瞭 ESN 模型中存在的病態矩陣問題,最後對模型性能進行倣真測試。結果錶明,WESN 可以很好地擬閤網絡流量變化,具有一定的實際應用價值。
망락류량시일충복잡、다변적비선성혼돈계통,위료획득경가이상적망락류량예측결과,침대전통회성상태망락적불족,제출일충소파회성상태망락류량예측모형(WESN)。수선채용소파분해장망락류량수거분해성고빈화저빈,연후장고빈화저빈적수거동시수입회성상태망락진행학습,종이해결료 ESN 모형중존재적병태구진문제,최후대모형성능진행방진측시。결과표명,WESN 가이흔호지의합망락류량변화,구유일정적실제응용개치。
Network traffic is a complex,non-linear chaotic system variable.In order to obtain a more rational network traffic prediction for the deficiencies in traditional echo networks,network traffic predic-tion model proposed wavelet echo state.Firstly,the wavelet decomposition to decompose the network traf-fic data onto high-frequency and low-frequency.Secondly high frequency and low frequency is inputted to the echo state network for learning.Finally the simulation experiments are carried out to test for the model performance.And this can solve the problem of morbid matrix models of ESN model.The results show that the proposed model can describe the change trend more accurately and improved the prediction accura-cy of network traffic.