计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2015年
5期
274-279
,共6页
殷明%水珺%栾静%白瑞峰
慇明%水珺%欒靜%白瑞峰
은명%수군%란정%백서봉
超分辨率重建%软判决自适应插值%图像融合%平移不变性剪切波变换%S函数%改进拉普拉斯能量和
超分辨率重建%軟判決自適應插值%圖像融閤%平移不變性剪切波變換%S函數%改進拉普拉斯能量和
초분변솔중건%연판결자괄응삽치%도상융합%평이불변성전절파변환%S함수%개진랍보랍사능량화
Super-resolution (SR) reconstruction%Soft-decision Adaptive Interpolation (SAI)%image fusion%Shift-invariant Shearlet Transform(SIST)%S function%Sum-modified Laplacian(SML)
针对单幅图像超分辨率重建问题,提出一种基于软判决自适应( SAI)-双三次( Bicubic)插值与平移不变剪切波融合的超分辨率重建算法。对源图像分别进行SAI插值和Bicubic插值,采用平移不变剪切波变换对2幅插值图像进行多尺度、多方向分解,得到低频及高频子带,对于低频子带,根据区域系数方差确定模糊相似度,结合改进的S函数确定自适应加权融合规则,对于高频子带,采用新改进拉普拉斯能量和与加权平均相结合的融合规则进行处理,将得到的融合系数进行剪切波逆变换,从而得到高分辨率重建图像。实验结果表明,与原有的SAI插值算法相比,该算法能提升重建图像的清晰度及峰值信噪比。
針對單幅圖像超分辨率重建問題,提齣一種基于軟判決自適應( SAI)-雙三次( Bicubic)插值與平移不變剪切波融閤的超分辨率重建算法。對源圖像分彆進行SAI插值和Bicubic插值,採用平移不變剪切波變換對2幅插值圖像進行多呎度、多方嚮分解,得到低頻及高頻子帶,對于低頻子帶,根據區域繫數方差確定模糊相似度,結閤改進的S函數確定自適應加權融閤規則,對于高頻子帶,採用新改進拉普拉斯能量和與加權平均相結閤的融閤規則進行處理,將得到的融閤繫數進行剪切波逆變換,從而得到高分辨率重建圖像。實驗結果錶明,與原有的SAI插值算法相比,該算法能提升重建圖像的清晰度及峰值信譟比。
침대단폭도상초분변솔중건문제,제출일충기우연판결자괄응( SAI)-쌍삼차( Bicubic)삽치여평이불변전절파융합적초분변솔중건산법。대원도상분별진행SAI삽치화Bicubic삽치,채용평이불변전절파변환대2폭삽치도상진행다척도、다방향분해,득도저빈급고빈자대,대우저빈자대,근거구역계수방차학정모호상사도,결합개진적S함수학정자괄응가권융합규칙,대우고빈자대,채용신개진랍보랍사능량화여가권평균상결합적융합규칙진행처리,장득도적융합계수진행전절파역변환,종이득도고분변솔중건도상。실험결과표명,여원유적SAI삽치산법상비,해산법능제승중건도상적청석도급봉치신조비。
For a single image Super-resolution( SR) reconstruction problem,a novel image SR algorithm based on Soft-decision Adaptive Interpolation ( SAI )-Bicubic interpolation and Shift-invariant Shearlet Transform ( SIST ) fusion is proposed. For each source image is separately interpolated by SAI and Bicubic interpolation,and the SIST is adopted to decompose the two interpolated images in different scales and directions,and the low-frequency and high-frequency sub-band coefficients of the two images are obtained. For the low frequency sub-band coefficients,according to the regional variance to determine the fuzzy similarity,a adaptive weighted fusion rule combined with improved sigmoid function is presented. For the high frequency sub-band coefficients,it uses a new Sum-modified Laplacian( SML) and is combined with the weighted average fusion rule. The high resolution image is obtained by performing the inverse SIST on the combined coefficients. Compared with the SAI,the imposed algorithm has very good effect on improving the clarity of the reconstructed image and Peak Signal to Noise Ratio( PSNR) .