计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
10期
219-222,226
,共5页
沈燕%肖仲喆%李冰洁%周孝进%周强%陶智
瀋燕%肖仲喆%李冰潔%週孝進%週彊%陶智
침연%초중철%리빙길%주효진%주강%도지
语音情感识别%线谱对频率(LSF)%Mel频率倒谱系数(MFCC)%高斯混合模型%模型空间
語音情感識彆%線譜對頻率(LSF)%Mel頻率倒譜繫數(MFCC)%高斯混閤模型%模型空間
어음정감식별%선보대빈솔(LSF)%Mel빈솔도보계수(MFCC)%고사혼합모형%모형공간
speech emotion recognition%Linear Spectrum Frequence(LSF)%Mel-Frequency Cepstral Coeffients(MFCC)%Gaussian Mixture Model(GMM)%model space
针对单一语音特征对语音情感表达不完整的问题,将具有良好量化和插值特性的LSF参数与体现人耳听觉特性的MFCC参数相融合,提出基于线谱权重的MFCC(WMFCC)新特征。同时,通过高斯混合模型来对该参数建立模型空间,进一步得到GW-MFCC模型空间参数,以获取更高维的细节信息,进一步提高情感识别性能。采用柏林情感语料库进行验证,新参数的识别率比传统的MFCC和LSF分别有5.7%和6.9%的提高。实验结果表明,提出的WMFCC以及GW-MFCC参数可以有效地表现语音情感信息,提高语音情感识别率。
針對單一語音特徵對語音情感錶達不完整的問題,將具有良好量化和插值特性的LSF參數與體現人耳聽覺特性的MFCC參數相融閤,提齣基于線譜權重的MFCC(WMFCC)新特徵。同時,通過高斯混閤模型來對該參數建立模型空間,進一步得到GW-MFCC模型空間參數,以穫取更高維的細節信息,進一步提高情感識彆性能。採用柏林情感語料庫進行驗證,新參數的識彆率比傳統的MFCC和LSF分彆有5.7%和6.9%的提高。實驗結果錶明,提齣的WMFCC以及GW-MFCC參數可以有效地錶現語音情感信息,提高語音情感識彆率。
침대단일어음특정대어음정감표체불완정적문제,장구유량호양화화삽치특성적LSF삼수여체현인이은각특성적MFCC삼수상융합,제출기우선보권중적MFCC(WMFCC)신특정。동시,통과고사혼합모형래대해삼수건립모형공간,진일보득도GW-MFCC모형공간삼수,이획취경고유적세절신식,진일보제고정감식별성능。채용백림정감어료고진행험증,신삼수적식별솔비전통적MFCC화LSF분별유5.7%화6.9%적제고。실험결과표명,제출적WMFCC이급GW-MFCC삼수가이유효지표현어음정감신식,제고어음정감식별솔。
Aiming the insufficient expression of speech emotion with single type of speech features, a new feature weight-ed MFCC(WMFCC) is proposed combining LSF with good interpolation and quantization performance and MFCC which presents human hearing characters. GMM model is applied to this feature to obtain high level model space parameter GW-MFCC in order to further improve the emotion recognition rate with detailed information. Experiments are carried out on EMO-DB. The correct recognition rates are 5.7% and 6.9% higher than using MFCC and LSF respectively. The experiment results show that the GW-MFCC feature can effectively convey emotional information in speech, thus can improve the performance in the emotion recognition.