计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
10期
16-19
,共4页
乘法Allee效应%分歧理论%稳定性
乘法Allee效應%分歧理論%穩定性
승법Allee효응%분기이론%은정성
multiplicative Allee affect%bifurcation theory%stability
讨论了一类带有乘法Allee效应的捕食-食饵扩散模型正解的存在性和稳定性。利用局部分歧理论研究了分歧正解的存在性,考察了分歧解的稳定性,运用全局分歧定理将局部分歧进行延拓从而得到了正解存在的充分条件。结果表明当参数满足一定条件时,两物种能共存而且共存解稳定。
討論瞭一類帶有乘法Allee效應的捕食-食餌擴散模型正解的存在性和穩定性。利用跼部分歧理論研究瞭分歧正解的存在性,攷察瞭分歧解的穩定性,運用全跼分歧定理將跼部分歧進行延拓從而得到瞭正解存在的充分條件。結果錶明噹參數滿足一定條件時,兩物種能共存而且共存解穩定。
토론료일류대유승법Allee효응적포식-식이확산모형정해적존재성화은정성。이용국부분기이론연구료분기정해적존재성,고찰료분기해적은정성,운용전국분기정리장국부분기진행연탁종이득도료정해존재적충분조건。결과표명당삼수만족일정조건시,량물충능공존이차공존해은정。
The existence and stability of a predator-prey diffusive model with multiplicative Allee affect are discussed. The existence of bifurcating positive solutions is investigated by means of the local bifurcation theory. The stability of bifurcation solutions is determined. By using the global bifurcation theory, the local bifurcation is extended and the suffi-ciently conditions of the existence of positive solutions are obtained. The results indicate that the two species will coexist when the parameters satisfy certain conditions, furthermore the coexistence solutions are stable.