表面技术
錶麵技術
표면기술
SURFACE TECHNOLOGY
2015年
5期
129-135
,共7页
雾化施液%硅片%位错腐蚀坑%传统抛光%雾化参数
霧化施液%硅片%位錯腐蝕坑%傳統拋光%霧化參數
무화시액%규편%위착부식갱%전통포광%무화삼수
ultrasonic atomization%silicon wafer%dislocation etch pit%traditional CMP%atomization parameters
目的:研究硅片经雾化施液抛光技术加工后存在的位错缺陷。方法应用化学腐蚀法、光学方法分析硅片不同部位的位错腐蚀形貌、位错密度及其分布,通过单因素实验研究雾化参数对位错形貌和位错密度的影响规律。在相同的工艺参数下,和传统抛光进行对比实验。结果雾化抛光硅片的平均位错密度为1.2×104/cm2,边沿处的位错密度小于其他区域。在相同的工艺参数下,雾化施液CMP的抛光液消耗量约为传统CMP的1/10,但硅片的位错腐蚀形貌和位错密度明显好于传统抛光,且蚀坑分布均匀分散,没有出现位错排等严重缺陷。通过增大雾化器的出雾量能有效改善硅片表层的位错缺陷。结论相对于传统抛光,雾化施液抛光技术能更加高效地去除硅片的位错缺陷。
目的:研究硅片經霧化施液拋光技術加工後存在的位錯缺陷。方法應用化學腐蝕法、光學方法分析硅片不同部位的位錯腐蝕形貌、位錯密度及其分佈,通過單因素實驗研究霧化參數對位錯形貌和位錯密度的影響規律。在相同的工藝參數下,和傳統拋光進行對比實驗。結果霧化拋光硅片的平均位錯密度為1.2×104/cm2,邊沿處的位錯密度小于其他區域。在相同的工藝參數下,霧化施液CMP的拋光液消耗量約為傳統CMP的1/10,但硅片的位錯腐蝕形貌和位錯密度明顯好于傳統拋光,且蝕坑分佈均勻分散,沒有齣現位錯排等嚴重缺陷。通過增大霧化器的齣霧量能有效改善硅片錶層的位錯缺陷。結論相對于傳統拋光,霧化施液拋光技術能更加高效地去除硅片的位錯缺陷。
목적:연구규편경무화시액포광기술가공후존재적위착결함。방법응용화학부식법、광학방법분석규편불동부위적위착부식형모、위착밀도급기분포,통과단인소실험연구무화삼수대위착형모화위착밀도적영향규률。재상동적공예삼수하,화전통포광진행대비실험。결과무화포광규편적평균위착밀도위1.2×104/cm2,변연처적위착밀도소우기타구역。재상동적공예삼수하,무화시액CMP적포광액소모량약위전통CMP적1/10,단규편적위착부식형모화위착밀도명현호우전통포광,차식갱분포균균분산,몰유출현위착배등엄중결함。통과증대무화기적출무량능유효개선규편표층적위착결함。결론상대우전통포광,무화시액포광기술능경가고효지거제규편적위착결함。
ABSTRACT:Objective To study the dislocation defect of silicon wafer which was polished by ultrasonic atomization chemical me-chanical polishing ( CMP) . Methods The chemical etching method and optics method were used to analyze the morphology, densi-ty, and distribution of the dislocation etch pits. Besides, the influence of atomization quantity on the morphology and density of dis-location was studied by single factor experiment. Then comparative experiments were conducted with traditional CMP under the same conditions. Results The average dislocation density of the polished silicon wafer was about 1. 2×104/cm2 and the dislocation density in edge area was lower than other areas. Besides, the dislocation morphology and dislocation density of silicon wafer pol-ished by ultrasonic atomization CMP were obviously better than those treated by traditional CMP under the same conditions while thepolishing liquid consumption was about one tenth of traditional CMP. The dislocation etch pits distributed evenly and there were no serious flaws such as dislocation piles and so on. In addition to that, the dislocation defect could be effectively improved by increas-ing the quantity of atomization. Conclusion Ultrasonic atomization CMP removed the dislocation defect of silicon wafer more effi-ciently than traditional CMP.