现代电子技术
現代電子技術
현대전자기술
MODERN ELECTRONICS TECHNIQUE
2015年
10期
73-77
,共5页
稀疏表示%字典学习%D-KSVD%Gabor
稀疏錶示%字典學習%D-KSVD%Gabor
희소표시%자전학습%D-KSVD%Gabor
sparse representation%dictionary learning%D-KSVD%Gabor
稀疏表示和字典学习在图像去噪、图像重建和模式识别等应用上取得了良好的效果,其利用稀疏系数和重构误差来作为模式分类的判别准则。稀疏表示纹理分割方法是将图像分割问题转换为像素点的分类问题。但通常稀疏表示分类方法是基于图像块特征,难以准确表征图像纹理信息。为了解决上述问题,提出基于Gabor特征的稀疏表示纹理分割方法。因为Gabor特征对图像纹理信息的鲁棒性,算法首先从每类纹理中选择一些像素点作为训练样本,计算其不同尺度和方向下的Gabor特征,将其作为初始化字典,通过判别性的字典学习算法(D?KSVD)更新字典,该字典学习算法在KSVD基础上使得字典更具有类别判别能力,最后以待分割图像的每个像素点作为测试样本,计算其Gabor特征。利用OMP算法得到测试样本在字典下的稀疏系数,根据稀疏系数得到类标签,进而对像素点进行分类,完成分割。通过在Brodatz纹理库上的实验结果表明,该方法有效提高了稀疏表示算法对纹理图像分割的正确率。
稀疏錶示和字典學習在圖像去譟、圖像重建和模式識彆等應用上取得瞭良好的效果,其利用稀疏繫數和重構誤差來作為模式分類的判彆準則。稀疏錶示紋理分割方法是將圖像分割問題轉換為像素點的分類問題。但通常稀疏錶示分類方法是基于圖像塊特徵,難以準確錶徵圖像紋理信息。為瞭解決上述問題,提齣基于Gabor特徵的稀疏錶示紋理分割方法。因為Gabor特徵對圖像紋理信息的魯棒性,算法首先從每類紋理中選擇一些像素點作為訓練樣本,計算其不同呎度和方嚮下的Gabor特徵,將其作為初始化字典,通過判彆性的字典學習算法(D?KSVD)更新字典,該字典學習算法在KSVD基礎上使得字典更具有類彆判彆能力,最後以待分割圖像的每箇像素點作為測試樣本,計算其Gabor特徵。利用OMP算法得到測試樣本在字典下的稀疏繫數,根據稀疏繫數得到類標籤,進而對像素點進行分類,完成分割。通過在Brodatz紋理庫上的實驗結果錶明,該方法有效提高瞭稀疏錶示算法對紋理圖像分割的正確率。
희소표시화자전학습재도상거조、도상중건화모식식별등응용상취득료량호적효과,기이용희소계수화중구오차래작위모식분류적판별준칙。희소표시문리분할방법시장도상분할문제전환위상소점적분류문제。단통상희소표시분류방법시기우도상괴특정,난이준학표정도상문리신식。위료해결상술문제,제출기우Gabor특정적희소표시문리분할방법。인위Gabor특정대도상문리신식적로봉성,산법수선종매류문리중선택일사상소점작위훈련양본,계산기불동척도화방향하적Gabor특정,장기작위초시화자전,통과판별성적자전학습산법(D?KSVD)경신자전,해자전학습산법재KSVD기출상사득자전경구유유별판별능력,최후이대분할도상적매개상소점작위측시양본,계산기Gabor특정。이용OMP산법득도측시양본재자전하적희소계수,근거희소계수득도류표첨,진이대상소점진행분류,완성분할。통과재Brodatz문리고상적실험결과표명,해방법유효제고료희소표시산법대문리도상분할적정학솔。
The method of sparse representation for texture segmentation is to convert the image segmentation into the pixel classification. Generally,the method of sparse representation classification is based on image block feature,which is difficult to accurately character the image’s texture information. To solve the above?mentioned problems,Gabor feature based sparse repre?sentation for texture segmentation is proposed in this paper,because Gabor feature is robustness to image texture. Firstly,some pixels are randomly select from each texture as training samples to calculate their Gabor features with different scales and orien?tations,and take these Gabor features as initialization dictionary. The dictionary is updated by discriminative dictionary learning (D?KSVD)algorithm. Based on KSVD,the algorithm makes the dictionary more discriminative. Finally,each pixel of the under segment image is taken as the test samples to calculate their Gabor features. The OMP algorithm is utilized to calculate the sparse coefficients to obtain the final class labels. The result of experiment on the Brodatz texture database shows that the pro?posed method can effectively improve the texture segmentation accuracy of sparse representation algorithm.