催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2015年
6期
845-854
,共10页
Titanium silicate%Zeolite%Cyclohexanone%Baeyer-Villiger oxidation%Hydrogen peroxide%Lewis acid catalysis
The reaction mechanism of the oxidation of cyclohexanone catalyzed by titanium silicate zeolite TS-1 using aqueous H2O2 as the oxidant was investigated by combining density function theory (DFT) calculations with experimental studies. DFT calculations showed that H2O2 was adsorbed and activated at the tetrahedral Ti sites. By taking into account the adsorption energy, molecular size, steric hindrance and structural information, a reaction mechanism of Baeyer-Villiger oxidation catalyzed by TS-1 that involves the activation of H2O2 was proposed. Experimental studies showed that the major products of cyclohexanone oxidation by H2O2 catalyzed by a hollow TS-1 zeolite wereε-carprolactone, 6-hydroxyhexanoic acid, and adipic acid. These products were analyzed by GC-MS and were in good agreement with the proposed mechanism. Our studies showed that the reaction mechanism on TS-1 zeolite was different from that on Sn-beta zeolite.