光电技术应用
光電技術應用
광전기술응용
ELECTRO-OPTIC WARFARE & RADAR PASSIVE COUNTERMEASURES
2015年
2期
27-32
,共6页
和江变%邹凯%马承鸿%李健
和江變%鄒凱%馬承鴻%李健
화강변%추개%마승홍%리건
N型晶体硅%太阳电池%背发射极%PC1D模拟
N型晶體硅%太暘電池%揹髮射極%PC1D模擬
N형정체규%태양전지%배발사겁%PC1D모의
N-type crystalline silicon%solar cells%back emitter%PC1D simulation
N型晶体太阳电池由于少子寿命高、光致衰减低、弱光响应好等优点,近年来在高效率低成本太阳电池领域一直备受关注。利用PC1D模拟,对N型背发射极晶体硅太阳电池进行了分析。结果表明,背发射极掺杂浓度、结深、背表面复合速率、前表面掺杂浓度及复合速率都对电池转换效率有较大影响,尤其是电池前表面与背表面复合速率对电池性能的影响最为明显,而电池前表面场掺杂深度则对电池性能影响较小。对于前表面复合来说,当前表面复合速率小于1×103 cm/s时,电池性能受表面复合速率变化的影响很小;但复合速率超过1×103 cm/s后,电池转换效率快速下降。背表面复合对电池效率影响则更明显,当背表面复合速率超过1×104 cm/s后,电池转换效率急剧下降,在背表面复合速率增大到1×106 cm/s时,电池效率下降到不足5%,而在电池背表面复合速度较小时(10~103 cm/s)则可获得较高的转换效率。
N型晶體太暘電池由于少子壽命高、光緻衰減低、弱光響應好等優點,近年來在高效率低成本太暘電池領域一直備受關註。利用PC1D模擬,對N型揹髮射極晶體硅太暘電池進行瞭分析。結果錶明,揹髮射極摻雜濃度、結深、揹錶麵複閤速率、前錶麵摻雜濃度及複閤速率都對電池轉換效率有較大影響,尤其是電池前錶麵與揹錶麵複閤速率對電池性能的影響最為明顯,而電池前錶麵場摻雜深度則對電池性能影響較小。對于前錶麵複閤來說,噹前錶麵複閤速率小于1×103 cm/s時,電池性能受錶麵複閤速率變化的影響很小;但複閤速率超過1×103 cm/s後,電池轉換效率快速下降。揹錶麵複閤對電池效率影響則更明顯,噹揹錶麵複閤速率超過1×104 cm/s後,電池轉換效率急劇下降,在揹錶麵複閤速率增大到1×106 cm/s時,電池效率下降到不足5%,而在電池揹錶麵複閤速度較小時(10~103 cm/s)則可穫得較高的轉換效率。
N형정체태양전지유우소자수명고、광치쇠감저、약광향응호등우점,근년래재고효솔저성본태양전지영역일직비수관주。이용PC1D모의,대N형배발사겁정체규태양전지진행료분석。결과표명,배발사겁참잡농도、결심、배표면복합속솔、전표면참잡농도급복합속솔도대전지전환효솔유교대영향,우기시전지전표면여배표면복합속솔대전지성능적영향최위명현,이전지전표면장참잡심도칙대전지성능영향교소。대우전표면복합래설,당전표면복합속솔소우1×103 cm/s시,전지성능수표면복합속솔변화적영향흔소;단복합속솔초과1×103 cm/s후,전지전환효솔쾌속하강。배표면복합대전지효솔영향칙경명현,당배표면복합속솔초과1×104 cm/s후,전지전환효솔급극하강,재배표면복합속솔증대도1×106 cm/s시,전지효솔하강도불족5%,이재전지배표면복합속도교소시(10~103 cm/s)칙가획득교고적전환효솔。
In recent years, N-type crystalline silicon solar cells have attracted much attention in the field of high efficiency and low cost solar cell due to its great advantages, such as long minority carrier lifetime, low light-in?duced degradation and good low-light response. PC1D simulation is used to analyze the back emitter N-type crystal?line silicon solar cells. The results show that back emitter doping concentration, junction depth, back surface recom?bination velocity, front surface field doping concentration and front surface recombination velocity have a greater im?pact on the cell conversion efficiency, and especially the front and back surface recombination velocity are the most. But the front surface field doping depth has less affect on the performance of the cell. For the front surface recombi?nation, when the surface recombination velocity is less than 1×103 cm/s, there is a small affect on the performance of the cell, but when the surface recombination velocity is greater than 1×103 cm/s, the conversion efficiency of the cell decreases rapidly. The effects of back surface recombination on cell efficiency is even more obvious when the back surface recombination velocity is greater than 1 × 104 cm/s, the conversion efficiency of the cell arises a sharp de?cline. As the back surface recombination velocity increases to 1 × 106 cm/s, the efficiency of the cell drops to less than 5%. In a low back surface recombination velocity range (10~103 cm/s), the cell can obtain high conversion effi?ciency.