物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2015年
5期
885-892
,共8页
肖雪春%施炜%倪哲明%张连阳%徐金芳
肖雪春%施煒%倪哲明%張連暘%徐金芳
초설춘%시위%예철명%장련양%서금방
肉桂醛%密度泛函理论%吸附%Au13团簇%Pt13团簇
肉桂醛%密度汎函理論%吸附%Au13糰簇%Pt13糰簇
육계철%밀도범함이론%흡부%Au13단족%Pt13단족
Cinnamaldehyde%Density functional theory%Adsorption%Au13 cluster%Pt13 cluster
运用广义梯度近似(GGA)密度泛函理论的Perdew-Burke-Ernzerh (PBE)方法,研究了肉桂醛在正二十面体Au13和Pt13团簇上的吸附行为。通过分析不同吸附模式的吸附能和几何构型发现:同一金属团簇,顺式肉桂醛的吸附能强于反式肉桂醛的吸附能。对于Au13团簇,肉桂醛的稳定吸附构型为C=C和C=O共吸附模型;对于Pt13团簇,肉桂醛的稳定吸附构型为C=O吸附。比较二者发现,肉桂醛在Pt13团簇的吸附能力强于Au13团簇。分析Au13和Pt13团簇上肉桂醛最稳定吸附构型的电子结构表明,电子由肉桂醛原子的2s、2p轨道向金属表面转移,同时金属部分电子反馈到肉桂醛的反键轨道,最终肉桂醛稳定吸附于金属团簇。此外,肉桂醛在团簇模型上的吸附能大于其在平板模型上的吸附能。
運用廣義梯度近似(GGA)密度汎函理論的Perdew-Burke-Ernzerh (PBE)方法,研究瞭肉桂醛在正二十麵體Au13和Pt13糰簇上的吸附行為。通過分析不同吸附模式的吸附能和幾何構型髮現:同一金屬糰簇,順式肉桂醛的吸附能彊于反式肉桂醛的吸附能。對于Au13糰簇,肉桂醛的穩定吸附構型為C=C和C=O共吸附模型;對于Pt13糰簇,肉桂醛的穩定吸附構型為C=O吸附。比較二者髮現,肉桂醛在Pt13糰簇的吸附能力彊于Au13糰簇。分析Au13和Pt13糰簇上肉桂醛最穩定吸附構型的電子結構錶明,電子由肉桂醛原子的2s、2p軌道嚮金屬錶麵轉移,同時金屬部分電子反饋到肉桂醛的反鍵軌道,最終肉桂醛穩定吸附于金屬糰簇。此外,肉桂醛在糰簇模型上的吸附能大于其在平闆模型上的吸附能。
운용엄의제도근사(GGA)밀도범함이론적Perdew-Burke-Ernzerh (PBE)방법,연구료육계철재정이십면체Au13화Pt13단족상적흡부행위。통과분석불동흡부모식적흡부능화궤하구형발현:동일금속단족,순식육계철적흡부능강우반식육계철적흡부능。대우Au13단족,육계철적은정흡부구형위C=C화C=O공흡부모형;대우Pt13단족,육계철적은정흡부구형위C=O흡부。비교이자발현,육계철재Pt13단족적흡부능력강우Au13단족。분석Au13화Pt13단족상육계철최은정흡부구형적전자결구표명,전자유육계철원자적2s、2p궤도향금속표면전이,동시금속부분전자반궤도육계철적반건궤도,최종육계철은정흡부우금속단족。차외,육계철재단족모형상적흡부능대우기재평판모형상적흡부능。
The adsorption behavior of cinnamaldehyde on icosahedral Au13 and Pt13 clusters was investigated by density functional theory with the Perdew-Burke-Ernzerh of generalized gradient approximation (GGA-PBE). When analyzing the adsorption energies and geometrical parameters of different adsorption models, the adsorption energy of cis-cinnamaldehyde was higher than that of trans-cinnamaldehyde for the same cluster. On the Au13 cluster, the most stable adsorption was the C=O and C=C double bond coadsorption model. While on the Pt13 cluster, the most stable adsorption was the C=O double bond adsorption model. Comparison between the Au13 and Pt13 clusters showed that the adsorption capacity of cinnamaldehyde on the Pt13 cluster was higher than on the Au13 cluster. Analyzing the electronic structures of the most stable adsorption configurations of cinnamaldehyde on the Au13 and Pt13 clusters showed that electrons transferred from 2s and 2p orbitals of cinnamaldehyde to the metal clusters. Electrons of metal clusters were also back-donated to the anti-bonding orbitals of the cinnamaldehyde molecule. This col aborative process eventual y led to the stable adsorption of cinnamaldehyde on the Au13 and Pt13 clusters. In addition, adsorption of cinnamaldehyde on cluster models was more energetically favorable than on flat models.