物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2015年
5期
905-912
,共8页
张继斌%滑纬博%郑卓%刘文元%郭孝东%钟本和
張繼斌%滑緯博%鄭卓%劉文元%郭孝東%鐘本和
장계빈%활위박%정탁%류문원%곽효동%종본화
锂离子电池%正极材料%LiNi1/3Co1/3Mn1/3O2%倍率性能%改进共沉淀法
鋰離子電池%正極材料%LiNi1/3Co1/3Mn1/3O2%倍率性能%改進共沉澱法
리리자전지%정겁재료%LiNi1/3Co1/3Mn1/3O2%배솔성능%개진공침정법
Lithium-ion battery%Cathode material%Li[Ni1/3Co1/3Mn1/3]O2%Rate capacity%Modified carbonate co-precipitation
采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2,通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征.结果表明,该方法制备的材料具有良好的α-NaFeO2型层状结构(R3m (166)),一次粒径平均大小为157 nm,二次颗粒成球形.同传统碳酸盐制备得到的材料相比,该材料具备良好的倍率性能和循环性能,在2.7-4.3 V电压范围内,0.1C (1.0C=180 mA?g-1)倍率下,首次放电比容量为156.4 mAh?g-1,库仑效率为81.9%.在较高倍率下,即0.5C、5.0C和20C时,其放电比容量分别为136.9、111.3、81.3 mAh?g-1.在1C倍率下100次循环容量保持率为92.9%,高于传统共沉淀法得到的材料(87.0%).
採用改進的碳痠鹽共沉澱與高溫固相法相結閤的方法製備齣瞭高倍率性能的鋰離子電池正極材料Li[Ni1/3Co1/3Mn1/3]O2,通過X射線衍射(XRD)、掃描電鏡(SEM)、循環伏安掃描(CV)、電化學阻抗譜(EIS)和電化學性能測試等手段對材料進行錶徵.結果錶明,該方法製備的材料具有良好的α-NaFeO2型層狀結構(R3m (166)),一次粒徑平均大小為157 nm,二次顆粒成毬形.同傳統碳痠鹽製備得到的材料相比,該材料具備良好的倍率性能和循環性能,在2.7-4.3 V電壓範圍內,0.1C (1.0C=180 mA?g-1)倍率下,首次放電比容量為156.4 mAh?g-1,庫崙效率為81.9%.在較高倍率下,即0.5C、5.0C和20C時,其放電比容量分彆為136.9、111.3、81.3 mAh?g-1.在1C倍率下100次循環容量保持率為92.9%,高于傳統共沉澱法得到的材料(87.0%).
채용개진적탄산염공침정여고온고상법상결합적방법제비출료고배솔성능적리리자전지정겁재료Li[Ni1/3Co1/3Mn1/3]O2,통과X사선연사(XRD)、소묘전경(SEM)、순배복안소묘(CV)、전화학조항보(EIS)화전화학성능측시등수단대재료진행표정.결과표명,해방법제비적재료구유량호적α-NaFeO2형층상결구(R3m (166)),일차립경평균대소위157 nm,이차과립성구형.동전통탄산염제비득도적재료상비,해재료구비량호적배솔성능화순배성능,재2.7-4.3 V전압범위내,0.1C (1.0C=180 mA?g-1)배솔하,수차방전비용량위156.4 mAh?g-1,고륜효솔위81.9%.재교고배솔하,즉0.5C、5.0C화20C시,기방전비용량분별위136.9、111.3、81.3 mAh?g-1.재1C배솔하100차순배용량보지솔위92.9%,고우전통공침정법득도적재료(87.0%).
A spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries was synthesized using a combination of modified carbonate co-precipitation and solid-state methods. The as-prepared material was analyzed using X-ray diffractometry (XRD), scanning electron microscopy (SEM), galvanostatic charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results indicate that the material synthesized using this new method has a wel-ordered layered structure,α-NaFeO2 [space group:R3m (166)], a spherical morphology, and an average particle size of 157 nm. Electrochemical measurements showed that the material has a good rate capability and long-term cycling performance. At a current density of 0.1C (1.0C=180 mA?g-1) in the voltage range 2.7-4.3 V, the initial discharge capacity was 156.4 mAh?g-1 and the coulombic efficiency was 81.9%. At 0.5C, 5C, and 20C, the specific capacities of the material were 136.9, 111.3, and 81.3 mAh?g-1, respectively. After 100 cycles at 1C, the material retained 92.9%of its initial capacity;this is higher than those of materials prepared using conventional carbonate co-precipitation (87.0%).