中国科学技术大学学报
中國科學技術大學學報
중국과학기술대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA
2015年
4期
268-274
,共7页
储著东%秦琳琳%陆林箭%马国旗%吴刚
儲著東%秦琳琳%陸林箭%馬國旂%吳剛
저저동%진림림%륙림전%마국기%오강
温室温度%混杂自动机%混杂控制器%时间设定值
溫室溫度%混雜自動機%混雜控製器%時間設定值
온실온도%혼잡자동궤%혼잡공제기%시간설정치
greenhouse temperature%hybrid automata%hybrid controller%time set point value
温室环境调控系统是一类具有离散设备控制和连续环境因子输入输出的混杂系统。传统温室控制算法大都没有考虑温室的混杂特性,采用系统建模与古典或现代控制算法控制温室环境系统,缺乏对中国温室实际情况设计控制器和分析系统的混杂特性。为此基于混杂自动机理论,结合实验温室的降温设备,设计了夏季温度混杂控制器,并分析其执行的非阻塞性和确定性。春季和夏季实验表明,该控制器能根据设定值合理及时地切换控制设备状态。此外,建立了夏季和冬季两种典型模式的控制器框架,通过分析2013年夏季至2014年夏季温室内日最低温度,得到切换两种模式的参考时间设定值,为实现温室周年连续控制提供设定参数,对实际生产控制具有指导意义。
溫室環境調控繫統是一類具有離散設備控製和連續環境因子輸入輸齣的混雜繫統。傳統溫室控製算法大都沒有攷慮溫室的混雜特性,採用繫統建模與古典或現代控製算法控製溫室環境繫統,缺乏對中國溫室實際情況設計控製器和分析繫統的混雜特性。為此基于混雜自動機理論,結閤實驗溫室的降溫設備,設計瞭夏季溫度混雜控製器,併分析其執行的非阻塞性和確定性。春季和夏季實驗錶明,該控製器能根據設定值閤理及時地切換控製設備狀態。此外,建立瞭夏季和鼕季兩種典型模式的控製器框架,通過分析2013年夏季至2014年夏季溫室內日最低溫度,得到切換兩種模式的參攷時間設定值,為實現溫室週年連續控製提供設定參數,對實際生產控製具有指導意義。
온실배경조공계통시일류구유리산설비공제화련속배경인자수입수출적혼잡계통。전통온실공제산법대도몰유고필온실적혼잡특성,채용계통건모여고전혹현대공제산법공제온실배경계통,결핍대중국온실실제정황설계공제기화분석계통적혼잡특성。위차기우혼잡자동궤이론,결합실험온실적강온설비,설계료하계온도혼잡공제기,병분석기집행적비조새성화학정성。춘계화하계실험표명,해공제기능근거설정치합리급시지절환공제설비상태。차외,건립료하계화동계량충전형모식적공제기광가,통과분석2013년하계지2014년하계온실내일최저온도,득도절환량충모식적삼고시간설정치,위실현온실주년련속공제제공설정삼수,대실제생산공제구유지도의의。
Due to the interaction between discrete on‐off controls and continuous environmental factors , greenhouse temperature control systems can be regarded as a class of hybrid system . Most previous greenhouse control algorithms rely on an exquisite system model and classical or modern control theories , and fail to consider the actual conditions of greenhouses in China in their design of a controller and their system anaysis does not include the hybrid properties of the greenhouse .Based directly on the hybrid automata theory , a hybrid controller was designed for controlling the temperatures of experimental greenhouse in summer .The controller was shown to be non‐blocking and deterministic in hybrid automata theory framework .Experiments were performed in the spring and summer of 2014 ,and the controller behaved reasonably and timely when events triggered state transitions . Further more , a controller framework containing two typical hybrid controller modes was established for winter and summer to meet the needs of continuous control all year round .And the referential time points for mode transitions were obtained by analyzing daily lowest temperaturs from 2013 to 2014 .