中国药业
中國藥業
중국약업
CHINA PHARMACEUTICALS
2015年
9期
32-34
,共3页
氟西汀%质谱%检测%药代动力学
氟西汀%質譜%檢測%藥代動力學
불서정%질보%검측%약대동역학
fluoxetine%mass spectrum%determination%pharmacokinetics
目的:建立检测人血浆中氟西汀含量的液相色谱-串联质谱(LC-MS/MS)法。方法保护柱为Phenomenex C18柱(4.7 mm ×3.0 mm),分析柱为Allure C18柱(50 mm ×4.6 mm,5μm),流动相为甲醇:2 mmol/L醋酸氨+0.5%甲酸水溶液(70:30,V/ V),流速0.5 mL/min,进样量10μL,柱温,20℃;质谱条件,离子源为大气压化学电离(ESI)源,喷雾电压IS为4500 V,雾化温度为550℃,雾化气NEB(GAS 1)为40 L/min,帘气CUR 为20 L/min,碰撞气CAD为5 L/min,辅助气AUX(GAS 2)为40 L/min,检测方式为正离子多离子反应监测模式(MRM),用于定量分析的离子反应分别为 m/ z 310.3→m/ z 148.2(氟西汀),m/ z 316.1→m/ z 270.0(内标,氯硝西泮),碰撞诱导解离(CID)电压分别为13 V(氟西汀)和35 V(氯硝西泮)。结果血浆中氟西汀质量浓度在0.3~25.0 ng/mL范围内线性关系良好(0.9994< r<0.9999),最低定量质量浓度为0.3 ng/mL,相对回收率为96.7%~105.7%,日内及日间精密度的 RSD小于10%。结论该方法专属、准确、灵敏度高,样品处理过程简便,适合人血浆中氟西汀含量测定和临床药代动力学研究。
目的:建立檢測人血漿中氟西汀含量的液相色譜-串聯質譜(LC-MS/MS)法。方法保護柱為Phenomenex C18柱(4.7 mm ×3.0 mm),分析柱為Allure C18柱(50 mm ×4.6 mm,5μm),流動相為甲醇:2 mmol/L醋痠氨+0.5%甲痠水溶液(70:30,V/ V),流速0.5 mL/min,進樣量10μL,柱溫,20℃;質譜條件,離子源為大氣壓化學電離(ESI)源,噴霧電壓IS為4500 V,霧化溫度為550℃,霧化氣NEB(GAS 1)為40 L/min,簾氣CUR 為20 L/min,踫撞氣CAD為5 L/min,輔助氣AUX(GAS 2)為40 L/min,檢測方式為正離子多離子反應鑑測模式(MRM),用于定量分析的離子反應分彆為 m/ z 310.3→m/ z 148.2(氟西汀),m/ z 316.1→m/ z 270.0(內標,氯硝西泮),踫撞誘導解離(CID)電壓分彆為13 V(氟西汀)和35 V(氯硝西泮)。結果血漿中氟西汀質量濃度在0.3~25.0 ng/mL範圍內線性關繫良好(0.9994< r<0.9999),最低定量質量濃度為0.3 ng/mL,相對迴收率為96.7%~105.7%,日內及日間精密度的 RSD小于10%。結論該方法專屬、準確、靈敏度高,樣品處理過程簡便,適閤人血漿中氟西汀含量測定和臨床藥代動力學研究。
목적:건립검측인혈장중불서정함량적액상색보-천련질보(LC-MS/MS)법。방법보호주위Phenomenex C18주(4.7 mm ×3.0 mm),분석주위Allure C18주(50 mm ×4.6 mm,5μm),류동상위갑순:2 mmol/L작산안+0.5%갑산수용액(70:30,V/ V),류속0.5 mL/min,진양량10μL,주온,20℃;질보조건,리자원위대기압화학전리(ESI)원,분무전압IS위4500 V,무화온도위550℃,무화기NEB(GAS 1)위40 L/min,렴기CUR 위20 L/min,팽당기CAD위5 L/min,보조기AUX(GAS 2)위40 L/min,검측방식위정리자다리자반응감측모식(MRM),용우정량분석적리자반응분별위 m/ z 310.3→m/ z 148.2(불서정),m/ z 316.1→m/ z 270.0(내표,록초서반),팽당유도해리(CID)전압분별위13 V(불서정)화35 V(록초서반)。결과혈장중불서정질량농도재0.3~25.0 ng/mL범위내선성관계량호(0.9994< r<0.9999),최저정량질량농도위0.3 ng/mL,상대회수솔위96.7%~105.7%,일내급일간정밀도적 RSD소우10%。결론해방법전속、준학、령민도고,양품처리과정간편,괄합인혈장중불서정함량측정화림상약대동역학연구。
Objective To establish a liquid chromatographic-tandem mass spectrometric method for the determination of fluoxetine in human plasma. Methods The chromatographic condition: pre-column: guard column ( 4. 7 mm × 3. 0 mm ); analytical column: Allure C18 ( 50 mm × 4. 6 mm, 5 μm );the mobile phase was methanol-2 mmol/L ammonium acetate plus 5% formic acid solution ( 70:30, v/ v );the flow rate:0. 5 mL/min;the injection volume:10 μL;the column temperature:20 ℃. The mass spectrum condition:iron source was at-mospheric pressure chemical ionization ( ESI );the spray voltage ( IS ) was 4 500 V;the nebulization temperature was 550 ℃;the nebuliza-tion gas NEB ( gas 1 ) was 40 L/min;the curtain gas CUR was 20 L/min;the collision gas CAD was 5 L/min;the auxiliary gas AUX ( gas 2 ) was 40 L/min; the detection mode was cation ion multiple reaction monitoring ( MRM ) , the ion reaction for the quantitative analysis was m/ z:310. 3→148. 2 ( fluoxetine ) and m/ z:316. 1→270. 0 ( internal standard, clonazepam ) , the collision induction disaggrega-tion ( CID ) voltage was 13 V ( fluoxetine ) and 35 V ( clonazepam ) . Results The linear relation was good in the concentration range 0. 3-25. 0 ng/mL for fluoxetine ( r=0. 999 4-0. 999 9 ) , the lowest quantitative concentration was 0. 3 ng/mL. The relative recovery rate was 96. 7% -105. 7%. the intra-day and inter-day precision RSD < 10%. Conclusion The developed method is highly specific, accurate and sensitive, its sample processing procedure is simple and suitable for pharmacokinetic study of fluoxetine in human plasma.