食品安全质量检测学报
食品安全質量檢測學報
식품안전질량검측학보
FOOD SAFETY AND QUALITY DETECTION TECHNOLOGY
2015年
5期
1799-1810
,共12页
魔芋%凝胶%冻融%特性%结构?
魔芋%凝膠%凍融%特性%結構?
마우%응효%동융%특성%결구?
konjac%gel%freeze-thawing%characteristics%structure?
目的:探讨魔芋凝胶经冻融处理后其特性及结构的变化。方法测定魔芋凝胶在冻融前后的持水性能;并结合傅里叶红外光谱法(Fourier transform infrared spectrometry, FT-IR)、差示扫描量热分析法(differential scanning calorimetry,DSC)、X 射线衍射法(X-ray diffraction,XRD)和扫描电镜分析法(scanning electron microscopy, SEM)分析不同冷冻温度处理后魔芋粉丝的结构。结果以持水性能中的持水倍数和复水后含水量为评价指标,魔芋凝胶冷冻处理的最佳条件为:冷冻温度-12℃,冷冻时间2 h,烘干时间4 h,烘干温度90℃。冻融过程中冷冻和干燥处理对魔芋凝胶中魔芋葡甘聚糖分子链中基团的影响微弱,但冷冻温度会对微观结构产生影响。结论本研究可为以简洁有效的工艺方式开发低热量快速食用魔芋凝胶粉丝提供理论支撑,从而为食品产业提供一类新型产品。
目的:探討魔芋凝膠經凍融處理後其特性及結構的變化。方法測定魔芋凝膠在凍融前後的持水性能;併結閤傅裏葉紅外光譜法(Fourier transform infrared spectrometry, FT-IR)、差示掃描量熱分析法(differential scanning calorimetry,DSC)、X 射線衍射法(X-ray diffraction,XRD)和掃描電鏡分析法(scanning electron microscopy, SEM)分析不同冷凍溫度處理後魔芋粉絲的結構。結果以持水性能中的持水倍數和複水後含水量為評價指標,魔芋凝膠冷凍處理的最佳條件為:冷凍溫度-12℃,冷凍時間2 h,烘榦時間4 h,烘榦溫度90℃。凍融過程中冷凍和榦燥處理對魔芋凝膠中魔芋葡甘聚糖分子鏈中基糰的影響微弱,但冷凍溫度會對微觀結構產生影響。結論本研究可為以簡潔有效的工藝方式開髮低熱量快速食用魔芋凝膠粉絲提供理論支撐,從而為食品產業提供一類新型產品。
목적:탐토마우응효경동융처리후기특성급결구적변화。방법측정마우응효재동융전후적지수성능;병결합부리협홍외광보법(Fourier transform infrared spectrometry, FT-IR)、차시소묘량열분석법(differential scanning calorimetry,DSC)、X 사선연사법(X-ray diffraction,XRD)화소묘전경분석법(scanning electron microscopy, SEM)분석불동냉동온도처리후마우분사적결구。결과이지수성능중적지수배수화복수후함수량위평개지표,마우응효냉동처리적최가조건위:냉동온도-12℃,냉동시간2 h,홍간시간4 h,홍간온도90℃。동융과정중냉동화간조처리대마우응효중마우포감취당분자련중기단적영향미약,단냉동온도회대미관결구산생영향。결론본연구가위이간길유효적공예방식개발저열량쾌속식용마우응효분사제공이론지탱,종이위식품산업제공일류신형산품。
Objective To explore the characteristics and the structure changes of konjac gel after freezing and thawing treatment. Methods The water binding capacity of konjac gel after freeze-thawing treatment was measured and Fourier transform infrared spectrometry (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and properties of the konjac vermicelli after treatment under different freezing temperature. Results Taking water binding capacity and moisture content after soaking as the evaluation index, the optimal treatment conditions were: frozen temperature of -12 ℃, frozen time of 2 h, drying time of 4 h, drying temperature of 90 ℃. In the process of freezing and thawing, freezing and drying treatment had little effect on the molecular chain of konjac glucomannan (KGM) in konjac gel, but freezing temperature would exert influence on the micro structure of konjac gel. Conclusion This research can provide theoretical guidance for the development of a kind of konjac gel vermicelli with low calories through a concise and effective way, which will further provide a new type of product for the food industry.