粉末冶金材料科学与工程
粉末冶金材料科學與工程
분말야금재료과학여공정
POWDER METALLURGY MATERIALS SCIENCE AND ENGINEERING
2015年
2期
155-161
,共7页
翁启钢%邱子力%袁铁锤%李瑞迪%苏文俊%王双%贺跃辉
翁啟鋼%邱子力%袁鐵錘%李瑞迪%囌文俊%王雙%賀躍輝
옹계강%구자력%원철추%리서적%소문준%왕쌍%하약휘
预电解%电解时间%FFC法%脱氧行为
預電解%電解時間%FFC法%脫氧行為
예전해%전해시간%FFC법%탈양행위
pre-electrolysis%electrolysis time%FFC%deoxidation
以无水氯化钙作为熔盐,采用熔盐电解法对TiO2阴极片进行脱氧,通过X射线衍射(XRD)和扫描电镜(SEM)对TiO2电解产物的相组成、电极表面形貌与元素组成进行观察与分析,研究熔盐的预电解脱水与熔盐电解时间对TiO2电解脱氧行为的影响。结果表明,熔盐未经预电解时,TiO2阴极片不发生脱氧反应,电解产物只有 CaTiO3相;熔盐经预电解脱水后,TiO2电解产物部分或全部为低价钛氧化物,预电解时间达到15 h即可有效去除熔盐中的水分,从而获得较佳的熔盐电解脱氧效果,电解产物为氧含量较低的Ti2O。TiO2电解脱氧是分步进行的,随电解进行,先后出现Ti2O3、TiO、Ti2O,由于钛的化合价逐渐降低,所需分解压升高,导致脱氧效率逐渐降低。TiO2阴极的脱氧反应是由表面到心部进行,电解后的阴极片明显分层,表层为氧含量较低的 Ti2O,中间层为 CaTiO3和钛的低价氧化物,心部为CaTiO3。
以無水氯化鈣作為鎔鹽,採用鎔鹽電解法對TiO2陰極片進行脫氧,通過X射線衍射(XRD)和掃描電鏡(SEM)對TiO2電解產物的相組成、電極錶麵形貌與元素組成進行觀察與分析,研究鎔鹽的預電解脫水與鎔鹽電解時間對TiO2電解脫氧行為的影響。結果錶明,鎔鹽未經預電解時,TiO2陰極片不髮生脫氧反應,電解產物隻有 CaTiO3相;鎔鹽經預電解脫水後,TiO2電解產物部分或全部為低價鈦氧化物,預電解時間達到15 h即可有效去除鎔鹽中的水分,從而穫得較佳的鎔鹽電解脫氧效果,電解產物為氧含量較低的Ti2O。TiO2電解脫氧是分步進行的,隨電解進行,先後齣現Ti2O3、TiO、Ti2O,由于鈦的化閤價逐漸降低,所需分解壓升高,導緻脫氧效率逐漸降低。TiO2陰極的脫氧反應是由錶麵到心部進行,電解後的陰極片明顯分層,錶層為氧含量較低的 Ti2O,中間層為 CaTiO3和鈦的低價氧化物,心部為CaTiO3。
이무수록화개작위용염,채용용염전해법대TiO2음겁편진행탈양,통과X사선연사(XRD)화소묘전경(SEM)대TiO2전해산물적상조성、전겁표면형모여원소조성진행관찰여분석,연구용염적예전해탈수여용염전해시간대TiO2전해탈양행위적영향。결과표명,용염미경예전해시,TiO2음겁편불발생탈양반응,전해산물지유 CaTiO3상;용염경예전해탈수후,TiO2전해산물부분혹전부위저개태양화물,예전해시간체도15 h즉가유효거제용염중적수분,종이획득교가적용염전해탈양효과,전해산물위양함량교저적Ti2O。TiO2전해탈양시분보진행적,수전해진행,선후출현Ti2O3、TiO、Ti2O,유우태적화합개축점강저,소수분해압승고,도치탈양효솔축점강저。TiO2음겁적탈양반응시유표면도심부진행,전해후적음겁편명현분층,표층위양함량교저적 Ti2O,중간층위 CaTiO3화태적저개양화물,심부위CaTiO3。
The effects of pre-electrolysis dehydration and electrolysis time on the TiO2 deoxidation during molten salt electrolysis were studied. The results showed that the electrolytic product was only CaTiO3 phase in the molten salt without pre-electrolysis. When pre-electrolysis time of 5h, 15h, 26h were applied, the electrolytic products were partial or complete suboxide of titanium. Pre-electrolysis of 15h can remove moisture and deoxidize effectively. During the deoxidization process, the electrolytic products of Ti2O3, TiO, Ti2O were formed successively. With the decrease of titanium valence, the decomposition voltage increased and led to the low deoxidation efficiency. The deoxidation reaction occurred from surface to inner of the TiO2 cathode. The electrolytic product showed layered structure with stable surface layer of Ti2O, interlayer of CaTiO3and low titanium oxide, inner layer of CaTiO3.