粉末冶金材料科学与工程
粉末冶金材料科學與工程
분말야금재료과학여공정
POWDER METALLURGY MATERIALS SCIENCE AND ENGINEERING
2015年
2期
304-311
,共8页
雷剑波%顾振杰%牛伟%王云山
雷劍波%顧振傑%牛偉%王雲山
뢰검파%고진걸%우위%왕운산
激光技术%激光熔覆%碳化钨%WC-NiSiB复合层%显微组织
激光技術%激光鎔覆%碳化鎢%WC-NiSiB複閤層%顯微組織
격광기술%격광용복%탄화오%WC-NiSiB복합층%현미조직
laser technology%laser cladding%WC%WC-NiSiB coating%microstructure
采用3 kW高功率半导体激光器,在45钢基体上制备不同WC含量(质量分数20%~80%)的WC-NiSiB复合涂层,用扫描电镜(SEM)、能谱仪(EDS)及X射线衍射(XRD)对熔覆层的微观组织、成分分布及物相进行表征,并测试涂层试样的硬度与耐磨性能。结果表明,激光熔覆WC-NiSiB复合涂层组织主要由γ-Ni、WC、W2C、WB、W2B、Ni4B3及Ni4W等物相组成,熔覆层与基体形成冶金结合。涂层与基体的结合区,从熔合线开始逐渐向上的组织依次为垂直于界面的胞状晶、柱状晶和枝状晶,熔覆层中部为沿一定方向生长的树枝晶,表层为异向生长的细小树枝晶。随WC颗粒含量增加,涂层中WC颗粒分布更加密集。WC含量为60%时,WC颗粒分布均匀致密,熔覆层无裂纹,熔覆层的硬度最高达到1291 HV,为NiSiB合金层硬度的2.7倍,耐磨性是NiSiB合金层的6.8倍。
採用3 kW高功率半導體激光器,在45鋼基體上製備不同WC含量(質量分數20%~80%)的WC-NiSiB複閤塗層,用掃描電鏡(SEM)、能譜儀(EDS)及X射線衍射(XRD)對鎔覆層的微觀組織、成分分佈及物相進行錶徵,併測試塗層試樣的硬度與耐磨性能。結果錶明,激光鎔覆WC-NiSiB複閤塗層組織主要由γ-Ni、WC、W2C、WB、W2B、Ni4B3及Ni4W等物相組成,鎔覆層與基體形成冶金結閤。塗層與基體的結閤區,從鎔閤線開始逐漸嚮上的組織依次為垂直于界麵的胞狀晶、柱狀晶和枝狀晶,鎔覆層中部為沿一定方嚮生長的樹枝晶,錶層為異嚮生長的細小樹枝晶。隨WC顆粒含量增加,塗層中WC顆粒分佈更加密集。WC含量為60%時,WC顆粒分佈均勻緻密,鎔覆層無裂紋,鎔覆層的硬度最高達到1291 HV,為NiSiB閤金層硬度的2.7倍,耐磨性是NiSiB閤金層的6.8倍。
채용3 kW고공솔반도체격광기,재45강기체상제비불동WC함량(질량분수20%~80%)적WC-NiSiB복합도층,용소묘전경(SEM)、능보의(EDS)급X사선연사(XRD)대용복층적미관조직、성분분포급물상진행표정,병측시도층시양적경도여내마성능。결과표명,격광용복WC-NiSiB복합도층조직주요유γ-Ni、WC、W2C、WB、W2B、Ni4B3급Ni4W등물상조성,용복층여기체형성야금결합。도층여기체적결합구,종용합선개시축점향상적조직의차위수직우계면적포상정、주상정화지상정,용복층중부위연일정방향생장적수지정,표층위이향생장적세소수지정。수WC과립함량증가,도층중WC과립분포경가밀집。WC함량위60%시,WC과립분포균균치밀,용복층무렬문,용복층적경도최고체도1291 HV,위NiSiB합금층경도적2.7배,내마성시NiSiB합금층적6.8배。
WC-NiSiB composite coatings with different WC contents were prepared on 45 steel substrate using 3kW high power diode laser. The morphology, composition and phase transformation of laser cladding layer were studied by scanning electronic microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), respectively. The results show that the phase compositions of diode laser cladding WC-NiSiB alloy areγ-Ni、WC、W2C WB、W2B、Ni4B3、Ni4W, etc; the cladding layer has a metallurgical bonding with substrate; the morphology of crystal grain at the bottom of lading layer is cell structure, whose growth is perpendicular to the interface of cladding and substrate; then the columnar grain transits to dendrite structure; the morphology of crystal grain at the central and top zones of layer is dendritic structure and grows with a single direction, but the crystal grain at surface layer grows with random direction; with the increase of WC particle content, distribution of WC in the coating is more intensive. When WC content is 60%, WC particle distribute uniformly and there is no crack in the layer. The highest hardness of HV 1217 in cladding layer is 2.7 times of NiSiB coating and it’s wear resistance is 6.8 times of NiSiB coating.