介入放射学杂志
介入放射學雜誌
개입방사학잡지
JOURNAL OF INTERVENTIONAL RADIOLOGY
2015年
5期
422-425
,共4页
隋爱霞%于慧敏%张宏涛%吴娟%任菊娜%高贞%王娟
隋愛霞%于慧敏%張宏濤%吳娟%任菊娜%高貞%王娟
수애하%우혜민%장굉도%오연%임국나%고정%왕연
125I%计算机治疗计划系统%剂量%近距离放射治疗
125I%計算機治療計劃繫統%劑量%近距離放射治療
125I%계산궤치료계화계통%제량%근거리방사치료
125I seed%treatment planning system%dose%brachytherapy
目的:探讨同活度、同数量125I粒子周边分布与中心分布的剂量学差异。方法采用计算机三维放射治疗计划系统(3D-TPS)勾画出2、2.5、3、3.5、4、4.5、5 cm等7种边长的正方体,模拟不同大小肿瘤,分别载入0.5 mCi 125I粒子,处方剂量145 Gy,粒子周边分布(周边组),得出剂量体积直方图(DVH)及90%靶体积吸收剂量(D90)、90%处方剂量覆盖的体积占靶体积百分比(V90)、最高剂量点、平均剂量等参数;同样方法将以上各肿瘤中载入粒子作中心分布(中心组),得出上述参数。结果周边组和中心组D90均数分别为(147.29±0.58)Gy和(106.08±9.40)Gy,差异有统计学意义(t=-4.292,P=0.005);V90均数分别为(95.46±0.44)%和(9.07±4.19)%,差异有统计学意义(t=-3.831,P=0.009);最高剂量均数分别为(1224.65±12.7)Gy和(1532.48±48.54)Gy,差异有统计学意义(t=6.823,P=0.000);平均剂量均数分别为(192.14±2.89)Gy和(179.81±5.40)Gy,差异有统计学意义(t=-2.847,P=0.029)。结论125I粒子不同分布模式直接影响剂量分布,粒子数目和活度相同时周边布源有较好的剂量分布。
目的:探討同活度、同數量125I粒子週邊分佈與中心分佈的劑量學差異。方法採用計算機三維放射治療計劃繫統(3D-TPS)勾畫齣2、2.5、3、3.5、4、4.5、5 cm等7種邊長的正方體,模擬不同大小腫瘤,分彆載入0.5 mCi 125I粒子,處方劑量145 Gy,粒子週邊分佈(週邊組),得齣劑量體積直方圖(DVH)及90%靶體積吸收劑量(D90)、90%處方劑量覆蓋的體積佔靶體積百分比(V90)、最高劑量點、平均劑量等參數;同樣方法將以上各腫瘤中載入粒子作中心分佈(中心組),得齣上述參數。結果週邊組和中心組D90均數分彆為(147.29±0.58)Gy和(106.08±9.40)Gy,差異有統計學意義(t=-4.292,P=0.005);V90均數分彆為(95.46±0.44)%和(9.07±4.19)%,差異有統計學意義(t=-3.831,P=0.009);最高劑量均數分彆為(1224.65±12.7)Gy和(1532.48±48.54)Gy,差異有統計學意義(t=6.823,P=0.000);平均劑量均數分彆為(192.14±2.89)Gy和(179.81±5.40)Gy,差異有統計學意義(t=-2.847,P=0.029)。結論125I粒子不同分佈模式直接影響劑量分佈,粒子數目和活度相同時週邊佈源有較好的劑量分佈。
목적:탐토동활도、동수량125I입자주변분포여중심분포적제량학차이。방법채용계산궤삼유방사치료계화계통(3D-TPS)구화출2、2.5、3、3.5、4、4.5、5 cm등7충변장적정방체,모의불동대소종류,분별재입0.5 mCi 125I입자,처방제량145 Gy,입자주변분포(주변조),득출제량체적직방도(DVH)급90%파체적흡수제량(D90)、90%처방제량복개적체적점파체적백분비(V90)、최고제량점、평균제량등삼수;동양방법장이상각종류중재입입자작중심분포(중심조),득출상술삼수。결과주변조화중심조D90균수분별위(147.29±0.58)Gy화(106.08±9.40)Gy,차이유통계학의의(t=-4.292,P=0.005);V90균수분별위(95.46±0.44)%화(9.07±4.19)%,차이유통계학의의(t=-3.831,P=0.009);최고제량균수분별위(1224.65±12.7)Gy화(1532.48±48.54)Gy,차이유통계학의의(t=6.823,P=0.000);평균제량균수분별위(192.14±2.89)Gy화(179.81±5.40)Gy,차이유통계학의의(t=-2.847,P=0.029)。결론125I입자불동분포모식직접영향제량분포,입자수목화활도상동시주변포원유교호적제량분포。
Objective To investigate the surrounding and central dosimetric distribution difference of the same activity, same number of 125I seeds. Methods 3D treatment planning system (3D-TPS) was used to separately sketch out 7 cubes with side length of 2 cm, 2.5 cm, 3 cm, 3.5 cm, 4 cm, 4.5 cm and 5 cm;simulations of different tumor sizes were established, into which 125I seeds with activity of 0.5 mCi were respectively loaded. All seeds were distributed at the periphery of the tumor (peripheral group) with the prescribed dose of 145 Gy. The dose volume histogram (DVH) was printed and the 90% of target volume absorbed dose (D90), 90% of prescription dose coverage target volume percentage (V90), the maximum dose and mean dose were determined. Then the seeds in every cube were distributed into the center (central group) and the above parameters were calculated by using the same method. Results The mean D90 of the peripheral and central group was (147.29 ±0.58) Gy and (106.08 ±9.40) Gy respectively, the difference between the two groups was statistically significant (t=-4.292, P=0.005). The mean V90 of the peripheral and central group was (95.46±0.44)% and (79.07±4.19)% respectively, the difference between the two groups was statistically significant (t=-3.831, P=0.009). The mean maximum dose of the peripheral and central group was (1 224.65 ±12.7) Gy and (1 532.48 ±48.54) Gy respectively, the difference between the two groups was statistically significant (t=6.823, P=0.000). The mean value of average dose of the peripheral and central group was (192.14 ±2.89) Gy and (179.81 ±5.40) Gy respectively, the difference between the two groups was statistically significant (t=-2.847, P=0.029). Conclusion The dose distribution is directly influenced by the distribution pattern of the 125I seeds. When the number and activity of the 125I seeds are the same, the peripheral seeds implantation has a better dose distribution.