南京林业大学学报(自然科学版)
南京林業大學學報(自然科學版)
남경임업대학학보(자연과학판)
JOURNAL OF NANJING FORESTRY UNIVERSITY(NATURAL SCIENCE EDITION)
2015年
3期
13-17
,共5页
高分辨率遥感%变化检测%自动提取%训练样本%整合森林指数
高分辨率遙感%變化檢測%自動提取%訓練樣本%整閤森林指數
고분변솔요감%변화검측%자동제취%훈련양본%정합삼림지수
high resolution remote sense%change detection%automatic extraction%training data%integrated forest index
森林训练样本自动提取算法( TDA)已在Landsat图像分析中得到了成功应用,笔者以广西苍梧县广平镇为研究区,采用2007年ALOS、2011年RapidEye遥感图像,试验该算法在高分辨率图像中的应用。研究首先根据图像光谱特性自动识别出纯净森林训练样本,然后依据归一化的整合森林指数图像提取两期森林/非森林分类结果并以此进行林地变化检测,经过精度分析结果表明,面积总误差为-2.6%,空间位置精度为87.7%,说明该算法可有效地从高分辨率遥感图像提取出纯净的森林训练样本,为森林/非森林分类以及变化检测提供基础数据。
森林訓練樣本自動提取算法( TDA)已在Landsat圖像分析中得到瞭成功應用,筆者以廣西蒼梧縣廣平鎮為研究區,採用2007年ALOS、2011年RapidEye遙感圖像,試驗該算法在高分辨率圖像中的應用。研究首先根據圖像光譜特性自動識彆齣純淨森林訓練樣本,然後依據歸一化的整閤森林指數圖像提取兩期森林/非森林分類結果併以此進行林地變化檢測,經過精度分析結果錶明,麵積總誤差為-2.6%,空間位置精度為87.7%,說明該算法可有效地從高分辨率遙感圖像提取齣純淨的森林訓練樣本,為森林/非森林分類以及變化檢測提供基礎數據。
삼림훈련양본자동제취산법( TDA)이재Landsat도상분석중득도료성공응용,필자이엄서창오현엄평진위연구구,채용2007년ALOS、2011년RapidEye요감도상,시험해산법재고분변솔도상중적응용。연구수선근거도상광보특성자동식별출순정삼림훈련양본,연후의거귀일화적정합삼림지수도상제취량기삼림/비삼림분류결과병이차진행임지변화검측,경과정도분석결과표명,면적총오차위-2.6%,공간위치정도위87.7%,설명해산법가유효지종고분변솔요감도상제취출순정적삼림훈련양본,위삼림/비삼림분류이급변화검측제공기출수거。
The algorithm of forest training data automation( TDA) has been successfully applied to Landsat images. Tak?ing Guangping Town, Cangwu County, Guangxi Province as the study area, we selected the ALOS image of 2007 and the RapidEye image of 2011 to explore the algorithm?s application in high resolution remote sensing images. The pure forest training samples were automatically identifed at first, and the change detection result was then obtained by the forest/non?forest classification which extracted by the normalized integrated forest index image involved in the anlaysis.The ac?curate evaluation results showed that the total area error was-2.6% and the spatial location accuracy was 87.7%. It was shown that this algorithm could be effectively applied to high resolution remote sensing images to extract pure forest train?ing samples for the forest/non?forest classification and change detection as the original data.