非金属矿
非金屬礦
비금속광
NON-METALLIC MINES
2015年
3期
16-18,39
,共4页
于英华%石瑞瑞%徐平%张文龙%刘敬福
于英華%石瑞瑞%徐平%張文龍%劉敬福
우영화%석서서%서평%장문룡%류경복
玄武岩纤维%聚合物矿物混凝土(PMC)%抗压强度%偶联处理
玄武巖纖維%聚閤物礦物混凝土(PMC)%抗壓彊度%偶聯處理
현무암섬유%취합물광물혼응토(PMC)%항압강도%우련처리
basalt ifber%polymer mineral concrete (PMC)%compressive strength%coupling treatment
为优化玄武岩纤维对聚合物矿物混凝土(PMC)的组分配比,通过正交实验,制备玄武岩纤维增强PMC,分析了各因素对玄武岩纤维增强PMC抗压强度的影响。结果表明,各因素对玄武岩纤维增强PMC抗压强度的影响显著性由大到小依次为:黏合剂E44与E51质量比,玄武岩纤维加入量,骨料用量,玄武岩纤维长径比。推荐玄武岩纤维增强PMC的最佳组分为:黏合剂E44与E51质量比40∶60,玄武岩纤维加入量0.4%,骨料用量80%,玄武岩纤维长径比70,抗压强度为112.38 MPa。对最佳组分中的玄武岩纤维偶联处理后,PMC抗压强度又提高14.1%,达到128.23 MPa。
為優化玄武巖纖維對聚閤物礦物混凝土(PMC)的組分配比,通過正交實驗,製備玄武巖纖維增彊PMC,分析瞭各因素對玄武巖纖維增彊PMC抗壓彊度的影響。結果錶明,各因素對玄武巖纖維增彊PMC抗壓彊度的影響顯著性由大到小依次為:黏閤劑E44與E51質量比,玄武巖纖維加入量,骨料用量,玄武巖纖維長徑比。推薦玄武巖纖維增彊PMC的最佳組分為:黏閤劑E44與E51質量比40∶60,玄武巖纖維加入量0.4%,骨料用量80%,玄武巖纖維長徑比70,抗壓彊度為112.38 MPa。對最佳組分中的玄武巖纖維偶聯處理後,PMC抗壓彊度又提高14.1%,達到128.23 MPa。
위우화현무암섬유대취합물광물혼응토(PMC)적조분배비,통과정교실험,제비현무암섬유증강PMC,분석료각인소대현무암섬유증강PMC항압강도적영향。결과표명,각인소대현무암섬유증강PMC항압강도적영향현저성유대도소의차위:점합제E44여E51질량비,현무암섬유가입량,골료용량,현무암섬유장경비。추천현무암섬유증강PMC적최가조분위:점합제E44여E51질량비40∶60,현무암섬유가입량0.4%,골료용량80%,현무암섬유장경비70,항압강도위112.38 MPa。대최가조분중적현무암섬유우련처리후,PMC항압강도우제고14.1%,체도128.23 MPa。
Polymer mineral concrete (PMC) reinforced by basalt ifber was fabricated by orthogonal tests to optimize the component mixture ratio. The law of how the factors affect the compression strength of PMC reinforced by basalt ifber was analyzed. The results showed that the signiifcant inlfuences on compressive strength of PMC reinforced by basalt ifber from large to small were the E44 and E51 mass ratio of adhesive, the amount of basalt ifber, the amount of aggregate and the aspect ratio of basalt ifber. The suitable constitute of PMC reinforced by basalt ifber were 40∶60 with the E44 and E51 mass ratio of adhesive, 0.4%basalt ifber, 80%aggregate and the aspect ratio of 70, the compressive strength was 112.38 MPa. After coupling treatment of the suitable constitute of PMC reinforced by basalt ifber, the compressive strength of PMC was128.23 MPa, 14.1%higher than that of PMC without coupling treatment.