中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2015年
5期
1314-1324
,共11页
径向基点插值法%有限元%无网格方法%大地电磁
徑嚮基點插值法%有限元%無網格方法%大地電磁
경향기점삽치법%유한원%무망격방법%대지전자
radial point interpolation method%finite element%meshfree method%magnetotelluric
径向基点插值法(RPIM)作为一种插值型无网格方法,为改善无网格点插值法(PIM)在形函数构造过程中可能出现的矩阵奇异性问题而提出的一种方法,该算法支持域无量纲尺寸的选择区间大,能更好地处理各类工程与科学计算问题。介绍了RPIM的近似原理,给出了径向基函数形状参数的推荐值;从大地电磁二维变分问题出发利用Galerkin法结合高斯积分公式推导出相应的系统矩阵离散表达式;为提高RPIM的计算效率,将RPIM与有限元法(FEM)耦合,提出了有限元-径向基点插值法(FE-RPIM),多个模型的数值计算验证了RPIM精度高、处理复杂模型便利及耦合法计算复杂模型高效的特点。
徑嚮基點插值法(RPIM)作為一種插值型無網格方法,為改善無網格點插值法(PIM)在形函數構造過程中可能齣現的矩陣奇異性問題而提齣的一種方法,該算法支持域無量綱呎吋的選擇區間大,能更好地處理各類工程與科學計算問題。介紹瞭RPIM的近似原理,給齣瞭徑嚮基函數形狀參數的推薦值;從大地電磁二維變分問題齣髮利用Galerkin法結閤高斯積分公式推導齣相應的繫統矩陣離散錶達式;為提高RPIM的計算效率,將RPIM與有限元法(FEM)耦閤,提齣瞭有限元-徑嚮基點插值法(FE-RPIM),多箇模型的數值計算驗證瞭RPIM精度高、處理複雜模型便利及耦閤法計算複雜模型高效的特點。
경향기점삽치법(RPIM)작위일충삽치형무망격방법,위개선무망격점삽치법(PIM)재형함수구조과정중가능출현적구진기이성문제이제출적일충방법,해산법지지역무량강척촌적선택구간대,능경호지처리각류공정여과학계산문제。개소료RPIM적근사원리,급출료경향기함수형상삼수적추천치;종대지전자이유변분문제출발이용Galerkin법결합고사적분공식추도출상응적계통구진리산표체식;위제고RPIM적계산효솔,장RPIM여유한원법(FEM)우합,제출료유한원-경향기점삽치법(FE-RPIM),다개모형적수치계산험증료RPIM정도고、처리복잡모형편리급우합법계산복잡모형고효적특점。
Polynomial basis interpolation method (RPIM), as a kind of typical interpolation meshfree method, was proposed to overcome the defects of point interpolation method (PIM) that the construction process of the shape function involves the matrix inverse operation. This method overcomes the matrix inverse problem, and supports the wider domain dimensionless size interval to better deal with all kinds of engineering and scientific computing problems. The approximate principle of RPIM was introduced in detail, and the discrete system matrix expression corresponding to the magnetotelluric two-dimensional variational problem by combining the Galerkin method and the gauss integral formula was deduced. In order to overcome the defects of low computational efficiency of RPIM, the finite element?radial point interpolation method (FE?RPIM) based on coupling the FEM and RPIM was proposed. The conclusions were verified by the numerical calculation of several models. The results show that RPIM has the advantage of high precision and convenience to calculate complex models, and FE-RPIM has the characteristics of high calculation efficiency for complex models.