四川兵工学报
四川兵工學報
사천병공학보
SICHUAN ORDNANCE JOURNAL
2015年
5期
155-158
,共4页
贝叶斯网络%参数学习%布尔型变量%连接树%最大似然估计算法
貝葉斯網絡%參數學習%佈爾型變量%連接樹%最大似然估計算法
패협사망락%삼수학습%포이형변량%련접수%최대사연고계산법
Bayesian networks%parameter learning%Boolean variables%junction tree,maximum likeli-hood estimation
布尔型贝叶斯网络是一类由布尔型变量组成的网络,它能够以线性多变量函数描述,使计算和处理上灵活高效。通过运用连接树算法对络进行分块化处理的方法,可以提高算法的效率,然后以传统的最大似然估计方法对布尔型网络的参数进行学习。服从同一分布律的贝叶斯网络参数学习算法发展比较成熟,这类以狄利克雷或者高斯分布为基础的算法在应用领域中难以发挥其应有的价值。相比之下,基于布尔型贝叶斯网络下的参数学习更贴近于应用,在人工智能和数据挖掘等领域有很好的发展前景。
佈爾型貝葉斯網絡是一類由佈爾型變量組成的網絡,它能夠以線性多變量函數描述,使計算和處理上靈活高效。通過運用連接樹算法對絡進行分塊化處理的方法,可以提高算法的效率,然後以傳統的最大似然估計方法對佈爾型網絡的參數進行學習。服從同一分佈律的貝葉斯網絡參數學習算法髮展比較成熟,這類以狄利剋雷或者高斯分佈為基礎的算法在應用領域中難以髮揮其應有的價值。相比之下,基于佈爾型貝葉斯網絡下的參數學習更貼近于應用,在人工智能和數據挖掘等領域有很好的髮展前景。
포이형패협사망락시일류유포이형변량조성적망락,타능구이선성다변량함수묘술,사계산화처리상령활고효。통과운용련접수산법대락진행분괴화처리적방법,가이제고산법적효솔,연후이전통적최대사연고계방법대포이형망락적삼수진행학습。복종동일분포률적패협사망락삼수학습산법발전비교성숙,저류이적리극뢰혹자고사분포위기출적산법재응용영역중난이발휘기응유적개치。상비지하,기우포이형패협사망락하적삼수학습경첩근우응용,재인공지능화수거알굴등영역유흔호적발전전경。
Boolean Bayesian network is a class of Bayesian networks which are made up of Boolean varia-bles. The method to describe the network with a multi-linear function is flexible and efficient to compute and process variables. By introducing Junction Tree algorithm,the network can be divided into blocks which can make it easy to calculate. Then the traditional maximum likelihood estimation method was used for learning Boolean networks. Parameter learning algorithm following the same distribution is more ma-ture,but this kind of algorithm based on Dirichlet or Gaussian distribution is difficult to play its proper val-ue in practice. In contrast,parameter learning based on Boolean networks gets close to applications. It has good prospects for development in areas such as artificial intelligence and data mining.