中华地方病学杂志
中華地方病學雜誌
중화지방병학잡지
Chinese Journal of Endemiology
2015年
5期
365-368
,共4页
刘礼平%杨通%钟文%池海珊%刘锐%李澎
劉禮平%楊通%鐘文%池海珊%劉銳%李澎
류례평%양통%종문%지해산%류예%리팽
水%碘%数据收集
水%碘%數據收集
수%전%수거수집
Water%Iodine%Data collection
目的 调查广东省鉴江流域地区居民饮水中碘含量,掌握该地区水源性高碘区的范围、分布,为制订适合的防控措施提供依据.方法 采用横断面筛查方法,于2012、2013年选择覆盖鉴江流域7个县(市、区)的所有镇(街),并根据鉴江各支流的走向、地理位置等情况分为重点调查镇(街)和一般调查镇(街).重点调查镇(街)根据辖区内河流走向、地势状况选取2个自然村,每个村采集1份水样;一般调查镇(街)则按东、西、南、北、中5个方位各抽取1个行政村,每个行政村抽取2个自然村,每个自然村采集1份水样.调查各自然村的供水类型,包括集中式供水、分散式供水和江河(水库)水.筛查发现碘含量> 100 μg/L的水样,则在水样采集的自然村按10%比例进行扩大抽样.水碘检测采用电感耦合等离子体质谱仪法(ICP-MS).结果 共调查鉴江流域居民饮用水3 583份,水碘中位数为15.1 μg/L.其中水库水、江河水、山泉水、井水水碘中位数分别为12.1、9.8、2.5、18.6 μg/L.水碘>100 μg/L的水样有341份,占9.5%;>150μg/L有228份,占6.4%;>300μg/L有58份,占1.6%.水碘> 100 μg/L的水样全部是分散式井水.可判定为水源性高碘地区(>150 μg/L)的自然村有18个,分布在5个县(市、区)14个镇(街)的16个行政村,共有户籍人口23 915人.鉴证流域中下游5个县(市、区)的水碘含量(24.7、28.6、20.5、23.2、24.0 μg/L)与上游2个县(市、区)水碘含量(12.0、10.9μg/L)比较差异有统计学意义(Z=13.5,P<0.05);沿岸与非沿岸地区水碘中位数(μg/L,12.5比5.9)比较差异有统计学意义(Z=6.1,P<0.05).结论 鉴江流域地表水碘含量普遍偏低;地下水(井水)则分散存在高水碘现象,且水碘含量在不同区域有差别,中下游比上游高,沿岸比非沿岸高.水源性高碘自然村在鉴江各主干和支流沿岸地区呈点状分布,基本不连成片.
目的 調查廣東省鑒江流域地區居民飲水中碘含量,掌握該地區水源性高碘區的範圍、分佈,為製訂適閤的防控措施提供依據.方法 採用橫斷麵篩查方法,于2012、2013年選擇覆蓋鑒江流域7箇縣(市、區)的所有鎮(街),併根據鑒江各支流的走嚮、地理位置等情況分為重點調查鎮(街)和一般調查鎮(街).重點調查鎮(街)根據轄區內河流走嚮、地勢狀況選取2箇自然村,每箇村採集1份水樣;一般調查鎮(街)則按東、西、南、北、中5箇方位各抽取1箇行政村,每箇行政村抽取2箇自然村,每箇自然村採集1份水樣.調查各自然村的供水類型,包括集中式供水、分散式供水和江河(水庫)水.篩查髮現碘含量> 100 μg/L的水樣,則在水樣採集的自然村按10%比例進行擴大抽樣.水碘檢測採用電感耦閤等離子體質譜儀法(ICP-MS).結果 共調查鑒江流域居民飲用水3 583份,水碘中位數為15.1 μg/L.其中水庫水、江河水、山泉水、井水水碘中位數分彆為12.1、9.8、2.5、18.6 μg/L.水碘>100 μg/L的水樣有341份,佔9.5%;>150μg/L有228份,佔6.4%;>300μg/L有58份,佔1.6%.水碘> 100 μg/L的水樣全部是分散式井水.可判定為水源性高碘地區(>150 μg/L)的自然村有18箇,分佈在5箇縣(市、區)14箇鎮(街)的16箇行政村,共有戶籍人口23 915人.鑒證流域中下遊5箇縣(市、區)的水碘含量(24.7、28.6、20.5、23.2、24.0 μg/L)與上遊2箇縣(市、區)水碘含量(12.0、10.9μg/L)比較差異有統計學意義(Z=13.5,P<0.05);沿岸與非沿岸地區水碘中位數(μg/L,12.5比5.9)比較差異有統計學意義(Z=6.1,P<0.05).結論 鑒江流域地錶水碘含量普遍偏低;地下水(井水)則分散存在高水碘現象,且水碘含量在不同區域有差彆,中下遊比上遊高,沿岸比非沿岸高.水源性高碘自然村在鑒江各主榦和支流沿岸地區呈點狀分佈,基本不連成片.
목적 조사광동성감강류역지구거민음수중전함량,장악해지구수원성고전구적범위、분포,위제정괄합적방공조시제공의거.방법 채용횡단면사사방법,우2012、2013년선택복개감강류역7개현(시、구)적소유진(가),병근거감강각지류적주향、지리위치등정황분위중점조사진(가)화일반조사진(가).중점조사진(가)근거할구내하류주향、지세상황선취2개자연촌,매개촌채집1빈수양;일반조사진(가)칙안동、서、남、북、중5개방위각추취1개행정촌,매개행정촌추취2개자연촌,매개자연촌채집1빈수양.조사각자연촌적공수류형,포괄집중식공수、분산식공수화강하(수고)수.사사발현전함량> 100 μg/L적수양,칙재수양채집적자연촌안10%비례진행확대추양.수전검측채용전감우합등리자체질보의법(ICP-MS).결과 공조사감강류역거민음용수3 583빈,수전중위수위15.1 μg/L.기중수고수、강하수、산천수、정수수전중위수분별위12.1、9.8、2.5、18.6 μg/L.수전>100 μg/L적수양유341빈,점9.5%;>150μg/L유228빈,점6.4%;>300μg/L유58빈,점1.6%.수전> 100 μg/L적수양전부시분산식정수.가판정위수원성고전지구(>150 μg/L)적자연촌유18개,분포재5개현(시、구)14개진(가)적16개행정촌,공유호적인구23 915인.감증류역중하유5개현(시、구)적수전함량(24.7、28.6、20.5、23.2、24.0 μg/L)여상유2개현(시、구)수전함량(12.0、10.9μg/L)비교차이유통계학의의(Z=13.5,P<0.05);연안여비연안지구수전중위수(μg/L,12.5비5.9)비교차이유통계학의의(Z=6.1,P<0.05).결론 감강류역지표수전함량보편편저;지하수(정수)칙분산존재고수전현상,차수전함량재불동구역유차별,중하유비상유고,연안비비연안고.수원성고전자연촌재감강각주간화지류연안지구정점상분포,기본불련성편.
Objective Through the investigation of the iodine content in residents" drinking water in Jianjiang River Basin of Guangdong,the scope and distribution of waterborne high iodine areas in this region were grasped so as to provide a basis for taking appropriate prevention and control measures.Methods All towns (streets) covering seven counties (cities,districts) of Jianjiang River Basin were selected by cross sectional screening method in 2012 and 2013,which were divided into mainly-investigated town (street) and generally-investigated town (street) according to the direction,geographical position and other situations of all branches of Jianjiang River.In each mainly-investigated town (street),two natural villages were selected according to the river direction and terrain conditions,and one water sample was collected from each village.In each generally-investigated town (street),one administrative village was selected respectively according to the locations (east,west,south,north and middle);two natural villages were selected from each administrative village,and one water sample was collected from each natural village.The water supply types of each natural village were investigated,including centralized water supply,decentralized water supply and river (reservoir) water.If the iodine content of the water samples was higher than 100 μg/L in the natural villages,then 10% more water samples were collected.The inductive coupling plasma mass spectroscopy (ICP-MS) was adopted for water iodine detection.Results A total of 3 583 residents" drinking water samples from Jianjiang River Basin were investigated,and the median of water iodine was 15.1 μg/L;the median of water iodine in reservoirs,river,mountain spring,well water was 12.1,9.8,2.5 and 18.6 μg/L,respectively.Iodine content of 341 water samples was > 100 μg/L,accounting for 9.5%;228 water samples were > 150 μg/L,accounting for 6.4%;58 water samples were more than 300 μg/L,accounting for 1.6%.The water samples with iodine content higher than 100 μg/L were all from decentralized well water.There were 18 natural villages which could be determined as the waterborne high iodine areas (water iodine > 150 μg/L);they were distributed in 16 administrative villages in 14 towns (streets) of 5 counties (cities,districts) and had a registered population of 23 915 in total.The difference of water iodine between the 5 counties (cities,districts) in middle and lower reaches of Jianjiang River Basin (24.7,28.6,20.5,23.2,24.0 μg/L) and the 2 counties (cities,districts) in upper reaches (12.0,10.9 μg/L) was statistically significant (Z =13.5,P < 0.05);the difference of water iodine between coastal and non-coastal areas (12.5 vs.5.9 μg/L) was statistically significant (Z =6.1,P < 0.05).Conclusions The iodine content in surface water of Jianjiang River Basin is generally lower;,the high water iodine phenomenon dispersedly occurs in the underground water (well water),and the iodine content is different in different areas;the iodine content of the middle and lower reaches is higher than that of the upper reach,and the iodine content of the coastal alluvial areas is higher than that of the non-coastal areas.The natural villages with waterborne high iodine are spottily distributed in the coastal areas of all backbones and branches of Jianjiang River,but not connected together basically.