计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
11期
248-251,260
,共5页
陈绍炜%吴敏华%赵帅
陳紹煒%吳敏華%趙帥
진소위%오민화%조수
模拟电路%主成分分析%极限学习机器%故障诊断
模擬電路%主成分分析%極限學習機器%故障診斷
모의전로%주성분분석%겁한학습궤기%고장진단
analog circuit%Principal Component Analysis(PCA)%Extreme Learning Machine(ELM)%fault diagnosis
针对模拟电路的故障诊断和健康管理(PHM)的应用,提出了结合主成分分析(PCA)和极限学习机(ELM)的故障诊断方法。该方法用Sallen-Key带通滤波器来获取故障样本,并通过PCA进行故障特征提取。根据故障样本对ELM进行训练来获得故障诊断模型。实验结果表明,该实现方法识别率高、鲁棒性好,在工程实际中具有研究和应用价值。
針對模擬電路的故障診斷和健康管理(PHM)的應用,提齣瞭結閤主成分分析(PCA)和極限學習機(ELM)的故障診斷方法。該方法用Sallen-Key帶通濾波器來穫取故障樣本,併通過PCA進行故障特徵提取。根據故障樣本對ELM進行訓練來穫得故障診斷模型。實驗結果錶明,該實現方法識彆率高、魯棒性好,在工程實際中具有研究和應用價值。
침대모의전로적고장진단화건강관리(PHM)적응용,제출료결합주성분분석(PCA)화겁한학습궤(ELM)적고장진단방법。해방법용Sallen-Key대통려파기래획취고장양본,병통과PCA진행고장특정제취。근거고장양본대ELM진행훈련래획득고장진단모형。실험결과표명,해실현방법식별솔고、로봉성호,재공정실제중구유연구화응용개치。
For analog circuit Prognostics and Health Management(PHM)applications, a fault diagnosis method combin-ing Principal Component Analysis(PCA)and Extreme Learning Machine(ELM)is discussed. The fault samples are obtained based on Sallen-Key bandpass filter design failure mode, and the fault feature extraction is performed by PCA. It trains the ELM by fault samples to obtain fault diagnosis model. Simulation results show that the method has a high recognition rate and robustness, with the value of research and application in engineering practice.