中国农村水利水电
中國農村水利水電
중국농촌수이수전
CHINA RURAL WATER AND HYDROPOWER
2015年
5期
144-147
,共4页
马琳%马福恒%范振东%李月娇
馬琳%馬福恆%範振東%李月嬌
마림%마복항%범진동%리월교
大坝%变形监测模型%支持向量机%改进的多变异位自适应遗传算法
大壩%變形鑑測模型%支持嚮量機%改進的多變異位自適應遺傳算法
대패%변형감측모형%지지향량궤%개진적다변이위자괄응유전산법
dam%deformation monitoring model%SVM%improved MMA
大坝的变形监测数据是一个复杂的非线性的时间序列,采用传统的建模方法存在拟合和预报精度低等问题。传统算法中,基本遗传算法不能确保全局最优收敛,而普通多变异位自适应遗传算法在进化初期对群体不利,容易导致进化走向局部最优。针对这一问题,提出一种基于改进的多变异位自适应遗传优化支持向量机(SVM )的建模方法。多变异自适应遗传算法采用二进制多点交叉,可根据个体适应值大小,自动选取合适的交叉概率和遗传概率,针对遗传算法易陷入局部最优点,对上述遗传算法进行改进,并利用该算法对支持向量机的模型参数进行寻优。将上述建模方法用于大坝变形监控模型的建立,结果表明该组合算法能有效提高模型的拟合和预报精度。
大壩的變形鑑測數據是一箇複雜的非線性的時間序列,採用傳統的建模方法存在擬閤和預報精度低等問題。傳統算法中,基本遺傳算法不能確保全跼最優收斂,而普通多變異位自適應遺傳算法在進化初期對群體不利,容易導緻進化走嚮跼部最優。針對這一問題,提齣一種基于改進的多變異位自適應遺傳優化支持嚮量機(SVM )的建模方法。多變異自適應遺傳算法採用二進製多點交扠,可根據箇體適應值大小,自動選取閤適的交扠概率和遺傳概率,針對遺傳算法易陷入跼部最優點,對上述遺傳算法進行改進,併利用該算法對支持嚮量機的模型參數進行尋優。將上述建模方法用于大壩變形鑑控模型的建立,結果錶明該組閤算法能有效提高模型的擬閤和預報精度。
대패적변형감측수거시일개복잡적비선성적시간서렬,채용전통적건모방법존재의합화예보정도저등문제。전통산법중,기본유전산법불능학보전국최우수렴,이보통다변이위자괄응유전산법재진화초기대군체불리,용역도치진화주향국부최우。침대저일문제,제출일충기우개진적다변이위자괄응유전우화지지향량궤(SVM )적건모방법。다변이자괄응유전산법채용이진제다점교차,가근거개체괄응치대소,자동선취합괄적교차개솔화유전개솔,침대유전산법역함입국부최우점,대상술유전산법진행개진,병이용해산법대지지향량궤적모형삼수진행심우。장상술건모방법용우대패변형감공모형적건립,결과표명해조합산법능유효제고모형적의합화예보정도。
Dam deformation monitoring data are a complex nonlinear time series .While modeling with traditional modeling methods , problems like low accuracy fitting and forecasting arise .In traditional algorithms ,the basic genetic algorithm can't ensure global opti‐mal convergence ,while the average multiple mutation adaptive genetic algorithm is unfavorable for groups in the early stage of evolu‐tion ,which generates a high possibility of leading the evolution towards local optimum .In response to this problem ,this paper pres‐ents a varied ectopic modeling method based on improved adaptive genetic optimization support vector machine (SVM) .Multiple mu‐tation adaptive genetic algorithm uses binary multi-point crossover method ,in which it automatically selects the appropriate crossover probability and genetic probability according to the size of individual fitness value .As genetic algorithm falls into local optimum easi‐ly ,the genetic algorithm above is improved to appropriately seek the optimization of SVM parameters .The modeling method above is used to establish the model of dam deformation monitoring ,and the results show that the combination algorithm can effectively im‐prove the accuracy of the model fitting and forecasting .