苏州科技学院学报(自然科学版)
囌州科技學院學報(自然科學版)
소주과기학원학보(자연과학판)
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF SUZHOU(NATURAL SCIENCE EDITION)
2015年
2期
41-46
,共6页
MoS2/Si异质结%接触特性%伏安特性
MoS2/Si異質結%接觸特性%伏安特性
MoS2/Si이질결%접촉특성%복안특성
MoS2/Si heterojunction%contact characteristics%current-voltage characteristics
单层硫化钼(MoS2)因具有直接带隙和特殊的六方晶系层状结构,而呈现优异的光学特性和电学特性。基于p-n结扩散模型推导了MoS2/Si异质结的接触特性和伏安特性,分析了不同施主掺杂浓度(n-MoS2)和受主掺杂浓度(p-Si)对能带结构和输运特性的影响。研究表明:MoS2/Si异质结的内建电势和势垒区宽度由施主、受主掺杂浓度共同决定。随着掺杂浓度的升高,内建电势VD逐渐增大,而势垒区宽度XD呈明显减小的趋势。另外,发现p-Si的受主掺杂浓度决定了MoS2/Si异质结的电流密度和反向饱和电流密度,均随着p-Si的受主掺杂浓度的增大而减小,但与n-MoS2的掺杂浓度关系不大。
單層硫化鉬(MoS2)因具有直接帶隙和特殊的六方晶繫層狀結構,而呈現優異的光學特性和電學特性。基于p-n結擴散模型推導瞭MoS2/Si異質結的接觸特性和伏安特性,分析瞭不同施主摻雜濃度(n-MoS2)和受主摻雜濃度(p-Si)對能帶結構和輸運特性的影響。研究錶明:MoS2/Si異質結的內建電勢和勢壘區寬度由施主、受主摻雜濃度共同決定。隨著摻雜濃度的升高,內建電勢VD逐漸增大,而勢壘區寬度XD呈明顯減小的趨勢。另外,髮現p-Si的受主摻雜濃度決定瞭MoS2/Si異質結的電流密度和反嚮飽和電流密度,均隨著p-Si的受主摻雜濃度的增大而減小,但與n-MoS2的摻雜濃度關繫不大。
단층류화목(MoS2)인구유직접대극화특수적륙방정계층상결구,이정현우이적광학특성화전학특성。기우p-n결확산모형추도료MoS2/Si이질결적접촉특성화복안특성,분석료불동시주참잡농도(n-MoS2)화수주참잡농도(p-Si)대능대결구화수운특성적영향。연구표명:MoS2/Si이질결적내건전세화세루구관도유시주、수주참잡농도공동결정。수착참잡농도적승고,내건전세VD축점증대,이세루구관도XD정명현감소적추세。령외,발현p-Si적수주참잡농도결정료MoS2/Si이질결적전류밀도화반향포화전류밀도,균수착p-Si적수주참잡농도적증대이감소,단여n-MoS2적참잡농도관계불대。
Single-layer (SL) molybdenum disulfide (MoS2) has excellent optical and electrical properties for its special hexagonal layered structure and the direct band gap. In this paper, we investigated the contact characteristics and the cur-rent-voltage characteristics of n-MoS2/p-Si heterojunction based on the p-n junction diffusing model, and analyzed the effects of the doping concentrations of n-MoS2 and p-Si on the band structure and transport properties. The results indi-cate that both the built-in potential and the width of the space-charge region depend on the doping concentrations. The built-in potential is positively related to them while the width of the space-charge region declines sharply with the in-creasing of them. In addition, we found that the current density decreases with the increasing of the doping concentration of p-Si, and significantly increases with the increasing of the temperature, but has not much to do with that of n-MoS2. These results are instructive for fabricating MoS2 optoelectronic devices.