中南大学学报(英文版)
中南大學學報(英文版)
중남대학학보(영문판)
JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY(ENGLISH EDITION)
2015年
6期
2149-2157
,共9页
丁建明%林建辉%何刘%赵洁
丁建明%林建輝%何劉%趙潔
정건명%림건휘%하류%조길
cardan shaft%empirical model decomposition (EMD)%singular value decomposition (SVD)%normalized Hilbert transform (NHT)%dynamic unbalance detection
Contrary to the aliasing defect between the adjacent intrinsic model functions (IMFs) existing in empirical model decomposition (EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition (SVD) and normalized Hilbert transform (NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys (IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved.