山东大学学报(理学版)
山東大學學報(理學版)
산동대학학보(이학판)
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE)
2015年
5期
68-73
,共6页
分数阶边值问题%非平凡解%Leray-Schauder度
分數階邊值問題%非平凡解%Leray-Schauder度
분수계변치문제%비평범해%Leray-Schauder도
fractional boundary value problem%nontrivial solution%Leray-Schauder degree
运用 Leray-Schauder 度理论,在相关算子第一特征值条件下,获得分数阶微分方程边值问题{Dα0+ u(t)=-f(t,u(t)),t∈[0,1] u(0)=u′(0)=u′(1)=0非平凡解的存在性,其中α∈(2,3]是一实数,Dα0+是α阶 Riemann-Liouville 分数阶导数。
運用 Leray-Schauder 度理論,在相關算子第一特徵值條件下,穫得分數階微分方程邊值問題{Dα0+ u(t)=-f(t,u(t)),t∈[0,1] u(0)=u′(0)=u′(1)=0非平凡解的存在性,其中α∈(2,3]是一實數,Dα0+是α階 Riemann-Liouville 分數階導數。
운용 Leray-Schauder 도이론,재상관산자제일특정치조건하,획득분수계미분방정변치문제{Dα0+ u(t)=-f(t,u(t)),t∈[0,1] u(0)=u′(0)=u′(1)=0비평범해적존재성,기중α∈(2,3]시일실수,Dα0+시α계 Riemann-Liouville 분수계도수。
By applying the theory of Leray-Schauder degree,the existence of nontrivial solutions for the boundary value problems of fractional differential equations{Dα0 + u(t)=-f(t,u(t)),t∈[0,1] u(0)=u′(0)=u′(1)=0 is considered under some conditions concerning the first eigenvalue corresponding to the relevant linear operator.Hereα∈(2,3]is a real number,Dα0 + is the standard Riemann-Liouville fractional derivative of order α.