北京工业大学学报
北京工業大學學報
북경공업대학학보
JOURNAL OF BEIJING POLYTECHNIC UNIVERSITY
2015年
6期
835-841
,共7页
孙艳丰%齐光磊%胡永利%赵璐
孫豔豐%齊光磊%鬍永利%趙璐
손염봉%제광뢰%호영리%조로
深度学习%卷积神经网络%Fisher准则%反向传播( BP)算法%人脸识别%手写字识别
深度學習%捲積神經網絡%Fisher準則%反嚮傳播( BP)算法%人臉識彆%手寫字識彆
심도학습%권적신경망락%Fisher준칙%반향전파( BP)산법%인검식별%수사자식별
deep learning%convolution network%Fisher criterion%backpropagation ( BP )%face recognition%handwriting recognition
为了有效利用深度学习技术自动提取特征的能力,并解决当训练样本量减少或者迭代次数降低时识别性能急速下降的问题,提出了基于Fisher准则的深度学习算法。该方法在前馈传播时,采用卷积神经网络自动提取图像的结构信息等特征,同时利用卷积网络共享权值和池化、下采样等方法减少了权值个数,降低了模型复杂度;在反向传播权值调整时,采用了基于Fisher的约束准则。在权值的迭代调整时既考虑误差的最小化,又同时让样本保持类内距离小,类间距离大,从而使权值能更加快速地逼近有利于分类的最优值,当样本量不足或训练迭代次数不多时可有效地提高系统的识别率。大量的实验结果证明:该基于Fisher准则的混合深度学习算法在标签样本不足或者较少训练次数的情况下依然能达到较好的识别效果。
為瞭有效利用深度學習技術自動提取特徵的能力,併解決噹訓練樣本量減少或者迭代次數降低時識彆性能急速下降的問題,提齣瞭基于Fisher準則的深度學習算法。該方法在前饋傳播時,採用捲積神經網絡自動提取圖像的結構信息等特徵,同時利用捲積網絡共享權值和池化、下採樣等方法減少瞭權值箇數,降低瞭模型複雜度;在反嚮傳播權值調整時,採用瞭基于Fisher的約束準則。在權值的迭代調整時既攷慮誤差的最小化,又同時讓樣本保持類內距離小,類間距離大,從而使權值能更加快速地逼近有利于分類的最優值,噹樣本量不足或訓練迭代次數不多時可有效地提高繫統的識彆率。大量的實驗結果證明:該基于Fisher準則的混閤深度學習算法在標籤樣本不足或者較少訓練次數的情況下依然能達到較好的識彆效果。
위료유효이용심도학습기술자동제취특정적능력,병해결당훈련양본량감소혹자질대차수강저시식별성능급속하강적문제,제출료기우Fisher준칙적심도학습산법。해방법재전궤전파시,채용권적신경망락자동제취도상적결구신식등특정,동시이용권적망락공향권치화지화、하채양등방법감소료권치개수,강저료모형복잡도;재반향전파권치조정시,채용료기우Fisher적약속준칙。재권치적질대조정시기고필오차적최소화,우동시양양본보지류내거리소,류간거리대,종이사권치능경가쾌속지핍근유리우분류적최우치,당양본량불족혹훈련질대차수불다시가유효지제고계통적식별솔。대량적실험결과증명:해기우Fisher준칙적혼합심도학습산법재표첨양본불족혹자교소훈련차수적정황하의연능체도교호적식별효과。
To effectively make use of deep learning technology automatic feature extraction ability, and solve the problem when the training sample size reduced or the iteration times reduced the recognition performance fell sharply, this paper proposed a deep learning algorithm based on Fisher criterion. In the feed forward spread, this method used convolution neural network to extract automatically image features such as structural information, and used convolution network of sharing weights and pooling, sub-sampling methods to reduce the weight number, and the method reduced the model complexity. When the back propagation adjusted the weights, it adopted the constraints based on Fisher criterion. At the same time, it kept the samples in small distance with-class and large distance between-class, so that the weights could be more close the optimal value for classification. It improved the recognition rate effectively when the sample size was insufficient or when it had few training iterations. A large number of experiments show that when the label samples are insufficient and the training iteration fewer, the hybrid deep learning algorithm based on Fisher criterion still achieves good recognition effect.