哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2015年
5期
730-735
,共6页
付永庆%郭慧%苏东林%刘焱
付永慶%郭慧%囌東林%劉焱
부영경%곽혜%소동림%류염
欠定盲源分离%信源数目估计%稀疏信号%Hough加窗法%无约束分离%梯度下降法
欠定盲源分離%信源數目估計%稀疏信號%Hough加窗法%無約束分離%梯度下降法
흠정맹원분리%신원수목고계%희소신호%Hough가창법%무약속분리%제도하강법
underdetermined blind source separation%source number estimation%sparse signals%Hough windowed method%unconstrained separation%gradient descent method
信源数目的估计是欠定盲源分离的前提条件,为了提高混合信号分离的准确性,提出一种Hough加窗法。利用Hough变换的思想将观测信号转变为角度变量,对变换域中的角度直方图进行加窗获得变换量的聚类区域,其峰值数即为信号源的数目。在此基础上,通过寻找变换量与混合矩阵列向量的关系可得到混合矩阵的估计值。提出一种无约束分离算法,由内点法从散点图分布中选取合适的初始迭代值,通过梯度下降法实现信号的分离。仿真实验结果表明, Hough加窗法具有较高的估计精度、较强的抗噪声性以及较低的稀疏敏感性,无约束分离算法具有较好的分离效果。
信源數目的估計是欠定盲源分離的前提條件,為瞭提高混閤信號分離的準確性,提齣一種Hough加窗法。利用Hough變換的思想將觀測信號轉變為角度變量,對變換域中的角度直方圖進行加窗穫得變換量的聚類區域,其峰值數即為信號源的數目。在此基礎上,通過尋找變換量與混閤矩陣列嚮量的關繫可得到混閤矩陣的估計值。提齣一種無約束分離算法,由內點法從散點圖分佈中選取閤適的初始迭代值,通過梯度下降法實現信號的分離。倣真實驗結果錶明, Hough加窗法具有較高的估計精度、較彊的抗譟聲性以及較低的稀疏敏感性,無約束分離算法具有較好的分離效果。
신원수목적고계시흠정맹원분리적전제조건,위료제고혼합신호분리적준학성,제출일충Hough가창법。이용Hough변환적사상장관측신호전변위각도변량,대변환역중적각도직방도진행가창획득변환량적취류구역,기봉치수즉위신호원적수목。재차기출상,통과심조변환량여혼합구진렬향량적관계가득도혼합구진적고계치。제출일충무약속분리산법,유내점법종산점도분포중선취합괄적초시질대치,통과제도하강법실현신호적분리。방진실험결과표명, Hough가창법구유교고적고계정도、교강적항조성성이급교저적희소민감성,무약속분리산법구유교호적분리효과。
The source number estimation is the prerequisite for underdetermined blind separation. In order to im?prove the accuracy of the mixed signal separation, a new Hough?windowed algorithm is proposed in this study. First, the algorithm transforms the observed signals into angular variables based on Hough transformation. The clus?ter area is obtained by windowing the histogram of angular variables in the transform domain. The peak value is the number of sources. Next, the mixture matrix is obtained through analyzing the relationship between the maxima in each cluster area and the column vector of the mixture matrix. Finally, an unconstrained separation algorithm is presented. The interior point method enables the acquisition of the initial value and the gradient descent method separates the signals. The simulation results showed that the Hough windowing method demonstrates higher estima?tion accuracy, stronger noise resistance ability, and lower sensitivity to sparse as well. In conclusion, the uncon?strained separation algorithm has better separation effect.