计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2015年
4期
392-396
,共5页
危险与可操作性分析%过程安全%动态过程模拟%过程系统
危險與可操作性分析%過程安全%動態過程模擬%過程繫統
위험여가조작성분석%과정안전%동태과정모의%과정계통
hazard and operability analysis%process safety%dynamic process simulation%process systems
HAZOP分析是一种广泛使用的过程安全评价方法,但缺乏定量化的评价依据。为了有效地辨识过程工业中潜在危险,在传统HAZOP方法基础上,提出了基于动态过程模拟的定量化HAZOP分析方法。首先进行HAZOP分析,辨识偏差原因和后果,然后建立动态过程模拟模型,通过预制故障模拟不同程度偏差原因对偏差后果的动态影响,得到偏差原因与后果之间的量化关系,并且通过模拟获得偏差原因的安全操作极限数据,分析现有安全保护措施的有效性,最后对偏差的调节措施进行模拟优化分析。为了验证所提出方法的有效性,以某气体分馏装置脱丙烷单元作为应用实例,采用Unisim软件建立动态过程模拟模型,对HAZOP偏差—“脱丙烷塔顶压力过高”的危险场景进行了模拟。研究结果表明,所提出的方法是对传统HAZOP分析的补充和扩展,实现了HAZOP偏差的定量化,从而提高了HAZOP分析的准确性和可靠性,对过程安全管理具有重要指导意义。
HAZOP分析是一種廣汎使用的過程安全評價方法,但缺乏定量化的評價依據。為瞭有效地辨識過程工業中潛在危險,在傳統HAZOP方法基礎上,提齣瞭基于動態過程模擬的定量化HAZOP分析方法。首先進行HAZOP分析,辨識偏差原因和後果,然後建立動態過程模擬模型,通過預製故障模擬不同程度偏差原因對偏差後果的動態影響,得到偏差原因與後果之間的量化關繫,併且通過模擬穫得偏差原因的安全操作極限數據,分析現有安全保護措施的有效性,最後對偏差的調節措施進行模擬優化分析。為瞭驗證所提齣方法的有效性,以某氣體分餾裝置脫丙烷單元作為應用實例,採用Unisim軟件建立動態過程模擬模型,對HAZOP偏差—“脫丙烷塔頂壓力過高”的危險場景進行瞭模擬。研究結果錶明,所提齣的方法是對傳統HAZOP分析的補充和擴展,實現瞭HAZOP偏差的定量化,從而提高瞭HAZOP分析的準確性和可靠性,對過程安全管理具有重要指導意義。
HAZOP분석시일충엄범사용적과정안전평개방법,단결핍정양화적평개의거。위료유효지변식과정공업중잠재위험,재전통HAZOP방법기출상,제출료기우동태과정모의적정양화HAZOP분석방법。수선진행HAZOP분석,변식편차원인화후과,연후건립동태과정모의모형,통과예제고장모의불동정도편차원인대편차후과적동태영향,득도편차원인여후과지간적양화관계,병차통과모의획득편차원인적안전조작겁한수거,분석현유안전보호조시적유효성,최후대편차적조절조시진행모의우화분석。위료험증소제출방법적유효성,이모기체분류장치탈병완단원작위응용실례,채용Unisim연건건립동태과정모의모형,대HAZOP편차—“탈병완탑정압력과고”적위험장경진행료모의。연구결과표명,소제출적방법시대전통HAZOP분석적보충화확전,실현료HAZOP편차적정양화,종이제고료HAZOP분석적준학성화가고성,대과정안전관리구유중요지도의의。
HAZOP (hazard and operability) analysis approach is widely used for the process safety assessment, but it lacks of the quantitative assessment basis. To effectively identify the potential hazards in the process industry, a quantitative HAZOP analysis approach based on dynamic process simulation was proposed by the introduction of the dynamic process simulation technique into conventional HAZOP analysis. Firstly, HAZOP analysis was performed to identify the causes and consequences of the deviations. The dynamic process simulation model was then established, which was used to model the dynamic effect of the different degree deviation causes on consequences by prefabrication fault. The quantitative relationship between deviation causes and consequences could be obtained, and the safety operation limitation data of deviation causes could also be achieved. Moreover, the effectiveness of the existed safety protection measures could be verified by the process simulation. Finally, the simulation optimization analysis of the deviation regulation measures has been carried out. To demonstrate the effectiveness of the proposed approach, the depropanizer unit in a gas fractionation plant was taken as a case study. The dynamic simulation model was established by the use of Unisim software. The hazard scenario was simulated for HAZOP deviation, i.e. much too high pressure at the top of the depropanizer. The results show that the proposed approach can be used to complement and extend the conventional HAZOP analysis. The quantitative analysis of HAZOP deviation can be achieved. As a result, it can improve the accuracy and reliability of HAZOP analysis and provide great guidance for the process safety management.