高校应用数学学报A辑
高校應用數學學報A輯
고교응용수학학보A집
APPLIED MATHEMATICS A JOURNAL OF CHINESE UNIVERSITIES
2015年
2期
171-179
,共9页
何泽荣%吴鹏%周娟
何澤榮%吳鵬%週娟
하택영%오붕%주연
尺度结构%广义Leslie模型%最优收获%凸优化%两阶段策略
呎度結構%廣義Leslie模型%最優收穫%凸優化%兩階段策略
척도결구%엄의Leslie모형%최우수획%철우화%량계단책략
size-structure%generalized Leslie’s model%optimal harvesting%convex optimization%two-staged strategy
研究基于扩展Leslie投影矩阵的离散尺度结构种群模型的最优收获问题,约束条件包括生态平衡和开发成本等。运用凸优化理论证明了最优收获策略的存在性,导出了最优收获模式,应用模型参数给出了收获比率。结论显示:最优策略具有两阶段结构。
研究基于擴展Leslie投影矩陣的離散呎度結構種群模型的最優收穫問題,約束條件包括生態平衡和開髮成本等。運用凸優化理論證明瞭最優收穫策略的存在性,導齣瞭最優收穫模式,應用模型參數給齣瞭收穫比率。結論顯示:最優策略具有兩階段結構。
연구기우확전Leslie투영구진적리산척도결구충군모형적최우수획문제,약속조건포괄생태평형화개발성본등。운용철우화이론증명료최우수획책략적존재성,도출료최우수획모식,응용모형삼수급출료수획비솔。결론현시:최우책략구유량계단결구。
This article is concerned with an optimal harvesting problem for a population model, which is based on expanded Leslie’s project matrix and incorporates an ecological balance and exploita-tion costs. By means of convex optimization method, the existence of optimal policies is shown and the harvesting ratio is specified. It is demonstrated that the optimal strategies are of two-staged form.