计算机辅助设计与图形学学报
計算機輔助設計與圖形學學報
계산궤보조설계여도형학학보
JOURNAL OF COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS
2015年
6期
968-973
,共6页
王胜法%李宝军%吕掌权%张龙飞%罗钟铉
王勝法%李寶軍%呂掌權%張龍飛%囉鐘鉉
왕성법%리보군%려장권%장룡비%라종현
轻量化建模%壳状结构%热扩散%三维打印
輕量化建模%殼狀結構%熱擴散%三維打印
경양화건모%각상결구%열확산%삼유타인
lightweight modelling%shell structures%heat diffusion%3D printing
针对壳状模型轻量化设计和模拟问题,提出一种基于热扩散的壳状汽车模型轻量化方法,并利用三维打印在个性化方面的优势建立具有数值模型模拟、三维打印,以及工程验证的一整套汽车轻量化建模系统。首先对模型进行特征分析和提取;然后在给定特征约束和受力工况(外力)条件下,通过热扩散对受力分布进行模拟,并将模拟数值与模型厚度进行对应,得到初步优化模型;进一步,通过三维打印得到实体实验模型,并对实验模型进行工程受力验证,进而根据工程验证情况调整热扩散程度,使得优化模型的厚度更加逼近实际受力要求;最后通过循环迭代方式得到满足受力要求的重量优化模型。实验结果表明,该方法能够在满足实际受力情况下减重达30%,并大大缩短了壳状汽车模型研发周期,是有效且高效的。
針對殼狀模型輕量化設計和模擬問題,提齣一種基于熱擴散的殼狀汽車模型輕量化方法,併利用三維打印在箇性化方麵的優勢建立具有數值模型模擬、三維打印,以及工程驗證的一整套汽車輕量化建模繫統。首先對模型進行特徵分析和提取;然後在給定特徵約束和受力工況(外力)條件下,通過熱擴散對受力分佈進行模擬,併將模擬數值與模型厚度進行對應,得到初步優化模型;進一步,通過三維打印得到實體實驗模型,併對實驗模型進行工程受力驗證,進而根據工程驗證情況調整熱擴散程度,使得優化模型的厚度更加逼近實際受力要求;最後通過循環迭代方式得到滿足受力要求的重量優化模型。實驗結果錶明,該方法能夠在滿足實際受力情況下減重達30%,併大大縮短瞭殼狀汽車模型研髮週期,是有效且高效的。
침대각상모형경양화설계화모의문제,제출일충기우열확산적각상기차모형경양화방법,병이용삼유타인재개성화방면적우세건립구유수치모형모의、삼유타인,이급공정험증적일정투기차경양화건모계통。수선대모형진행특정분석화제취;연후재급정특정약속화수력공황(외력)조건하,통과열확산대수력분포진행모의,병장모의수치여모형후도진행대응,득도초보우화모형;진일보,통과삼유타인득도실체실험모형,병대실험모형진행공정수력험증,진이근거공정험증정황조정열확산정도,사득우화모형적후도경가핍근실제수력요구;최후통과순배질대방식득도만족수력요구적중량우화모형。실험결과표명,해방법능구재만족실제수력정황하감중체30%,병대대축단료각상기차모형연발주기,시유효차고효적。
Aiming at the problem of lightweight design and simulation for shell-structure models, this paper proposes a heat diffusion based lightweight method for shell-structure automobile models. By taking advan-tage of 3D printing on personalization, we establish a complete system consists of numerical simulating, 3D printing and the engineering validation. Firstly, an analysis and extraction of features are performed on the model. Secondly, given a feature constraint and force conditions (under external force), we obtain an initial model whose thickness is corresponded to the simulated value in the heat field that is used to simulate the stress distribution. Thirdly, a test model is printed using the 3D printer for the engineering validation. The required thickness can be approximated better by adjusting the heat diffusion according to results of the en-gineering validation. Finally, an optimized model that satisfies all the conditions can be obtained using an iterative process. Experiment results show that the actual weight loss can reach 30%, and meanwhile, it greatly shortens the development cycle of shell-structure automobile models, hence, the proposed method is effective and efficient.