农业工程学报
農業工程學報
농업공정학보
2015年
10期
204-210
,共7页
刘碧贞%黄华%祝诗平%向必万
劉碧貞%黃華%祝詩平%嚮必萬
류벽정%황화%축시평%향필만
收割机%农业%数据处理%谷物产量测量%北斗卫星%产量分布图
收割機%農業%數據處理%穀物產量測量%北鬥衛星%產量分佈圖
수할궤%농업%수거처리%곡물산량측량%북두위성%산량분포도
combines%agriculture%data processing%yield monitor%Beidou satellite%yield map
针对在谷物产量测量作业中收割机采用单一的全球定位系统(global positioning system, GPS)进行定位时定位信息不稳定的问题,提出利用具有定位和双向通信功能的北斗/GPS双模用户机,其内部采用北斗(BJ-54)和GPS(WGS-84)2种混合定位方式,将这2种定位方式互补使用,可以解决当使用单一定位情况下定位信息不稳定的问题。利用北斗/GPS双模用户机的定位信息实现谷物收割机行走线路图的测绘;利用北斗卫星的报文通信功能代替全球移动通信系统短信息服务,实现谷物收割机作业数据的远程传输功能。谷物收割机作业综合管理系统包括作业管理中心和车载子系统两部分。车载子系统实现收割机的地理位置、收割面积和谷物质量等数据的采集,然后将采集的数据通过北斗卫星传输给作业管理中心。作业管理中心利用这些数据可以绘制出收割机作业轨迹图和产量分布图,同时作业管理中心也可以向收割机发送作业指令,并通过文本语音转换模块将文本内容转换成语音信号输出,实现作业的综合管理与调度。田间产量测量试验表明,系统测量谷物收割面积相对误差为2.9%,谷物产量相对误差为3.47%,系统运行稳定、可靠。该系统可为南方丘陵山区谷物收割机跨区作业的产量测量、管理提供参考。
針對在穀物產量測量作業中收割機採用單一的全毬定位繫統(global positioning system, GPS)進行定位時定位信息不穩定的問題,提齣利用具有定位和雙嚮通信功能的北鬥/GPS雙模用戶機,其內部採用北鬥(BJ-54)和GPS(WGS-84)2種混閤定位方式,將這2種定位方式互補使用,可以解決噹使用單一定位情況下定位信息不穩定的問題。利用北鬥/GPS雙模用戶機的定位信息實現穀物收割機行走線路圖的測繪;利用北鬥衛星的報文通信功能代替全毬移動通信繫統短信息服務,實現穀物收割機作業數據的遠程傳輸功能。穀物收割機作業綜閤管理繫統包括作業管理中心和車載子繫統兩部分。車載子繫統實現收割機的地理位置、收割麵積和穀物質量等數據的採集,然後將採集的數據通過北鬥衛星傳輸給作業管理中心。作業管理中心利用這些數據可以繪製齣收割機作業軌跡圖和產量分佈圖,同時作業管理中心也可以嚮收割機髮送作業指令,併通過文本語音轉換模塊將文本內容轉換成語音信號輸齣,實現作業的綜閤管理與調度。田間產量測量試驗錶明,繫統測量穀物收割麵積相對誤差為2.9%,穀物產量相對誤差為3.47%,繫統運行穩定、可靠。該繫統可為南方丘陵山區穀物收割機跨區作業的產量測量、管理提供參攷。
침대재곡물산량측량작업중수할궤채용단일적전구정위계통(global positioning system, GPS)진행정위시정위신식불은정적문제,제출이용구유정위화쌍향통신공능적북두/GPS쌍모용호궤,기내부채용북두(BJ-54)화GPS(WGS-84)2충혼합정위방식,장저2충정위방식호보사용,가이해결당사용단일정위정황하정위신식불은정적문제。이용북두/GPS쌍모용호궤적정위신식실현곡물수할궤행주선로도적측회;이용북두위성적보문통신공능대체전구이동통신계통단신식복무,실현곡물수할궤작업수거적원정전수공능。곡물수할궤작업종합관리계통포괄작업관리중심화차재자계통량부분。차재자계통실현수할궤적지리위치、수할면적화곡물질량등수거적채집,연후장채집적수거통과북두위성전수급작업관리중심。작업관리중심이용저사수거가이회제출수할궤작업궤적도화산량분포도,동시작업관리중심야가이향수할궤발송작업지령,병통과문본어음전환모괴장문본내용전환성어음신호수출,실현작업적종합관리여조도。전간산량측량시험표명,계통측량곡물수할면적상대오차위2.9%,곡물산량상대오차위3.47%,계통운행은정、가고。해계통가위남방구릉산구곡물수할궤과구작업적산량측량、관리제공삼고。
At present, most combine harvesters are using Global Positioning System (GPS) to get the position of harvesters and draw harvesters’ work trajectories. However, the positioning information might be instable by using a single positioning. In order to solve this problem, this paper makes full use of Beidou/GPS dual-mode receiver which supports positioning and two-way communication. The inside of the Beidou/GPS dual-mode receiver contains 2 positioning systems: Beidou Navigation Satellite System (BDS) and GPS. But these 2 positioning algorithms are using 2 different coordinate systems: Beidou navigation positioning algorithm uses BJ-54 coordinate system, and the positioning algorithm of GPS navigation uses WGS-84 coordinate system. Complementary use of these 2 positioning systems can solve the problem of positioning information instability that occurs when using a single positioning. It means that when the Beidou positioning information has deviation, GPS positioning information can be used to make correction. The combine harvester walking map can be drawn from the positioning information of the Beidou/GPS dual-mode receiver. The message communication function of Beidou satellite is used instead of GSM short message service to realize remote transmission between harvester and control center. The integrated management system for grain combine harvester is designed using sensor detection technology, data acquisition and processing technology, wireless communication technology, navigation technology, speech synthesis technology and computer network technology. The integrated management system of grain combine harvester includes 2 parts: Vehicle subsystems and control center. The vehicle subsystem consists of Beidou/GPS dual-mode receiver, weight sensor module, moisture sensor module, speed sensor module and text-to-speech (TTS) module. The control center consists of clients and server. The vehicle subsystem collects the data of geographical position, harvested area and grain weight, and then transmits the data to the control center by Beidou satellite. The server of control center analyzes and processes these data, and then draws the harvester’s work trajectory map and the yield map, and the clients of control center can query the harvester’s work trajectory map and the yield map of designated position. In order to achieve integrated management and scheduling for harvesters, the control center can send text commands to the harvesters, and the text commands can be converted into speech through TTS technology. In the field tests, the harvester runs with the speed of 3.6 km/h. The actual area of the harvesting is about 4 716 m2, the actual total mass of grain is 3 086 kg, and the average yield is 6 544 kg/hm2. However, the harvesting area is 4 853 m2, the total mass of grain is 3 193 kg and the average yield is 6 579 kg/hm2 measured by the system. The relative errors are 2.9%, 3.47% and 0.55% respectively. From the result we find that this integrated management system of grain combine harvester has a certain error, but the precisions of harvesting area and grain weight both reach 96%. The tests show the system is running stably and reliably. Therefore, this system is valuable for yield monitoring and trans-regional operation management of grain combine harvester in southern hilly area of China.