农业工程学报
農業工程學報
농업공정학보
2015年
10期
1-10
,共10页
胡静涛%高雷%白晓平%李逃昌%刘晓光
鬍靜濤%高雷%白曉平%李逃昌%劉曉光
호정도%고뢰%백효평%리도창%류효광
农业机械%导航%模型%农机物联网
農業機械%導航%模型%農機物聯網
농업궤계%도항%모형%농궤물련망
agricultural machinery%navigation%models%internet of things for agriculture vehicles
农业机械自动导航是精准农业技术体系中的一项核心关键技术,广泛应用于耕作、播种、施肥、喷药、收获等农业生产过程。农机位置测量方法、农机模型与导航路径跟踪控制方法是农业机械自动导航技术的研究重点,受到国内外科研人员的广泛关注。农机位置测量主要有相对测量和绝对测量二类方法,前者以基于机器视觉的测量方法为代表,主要利用图像处理技术识别作物行,进而确定导航基准线,实现农机与作物的相对位置与航向信息的测量;后者则以基于全球导航卫星系统的测量方法为代表,利用卫星定位技术实现农机位置的高精度测量,在农业生产中应用最为广泛;而面对复杂的田间环境变化,在位置测量中应用多传感器数据融合技术通常可以得到更好的测量结果。导航路径跟踪控制通常以农机运动学模型或动力学模型为核心,多采用最优控制、最优估计、自适应控制、人工神经网络、模糊控制、鲁棒控制等现代控制理论与方法;而无模型控制方法则可以避免建模不准确或者模型参数剧烈变化对农机路径跟踪控制性能所产生的负面影响。该文从上述2个方面综述分析了农业机械自动导航技术的研究现状及存在的问题,并对未来农机导航技术的发展做出了展望,指出采用卫星导航技术,开展农机地头自动转向控制、障碍物探测及主动避障、多机协同导航等高级导航技术研究,以及引入先进的物联网技术,是现代农机自动导航技术发展的主要趋势。
農業機械自動導航是精準農業技術體繫中的一項覈心關鍵技術,廣汎應用于耕作、播種、施肥、噴藥、收穫等農業生產過程。農機位置測量方法、農機模型與導航路徑跟蹤控製方法是農業機械自動導航技術的研究重點,受到國內外科研人員的廣汎關註。農機位置測量主要有相對測量和絕對測量二類方法,前者以基于機器視覺的測量方法為代錶,主要利用圖像處理技術識彆作物行,進而確定導航基準線,實現農機與作物的相對位置與航嚮信息的測量;後者則以基于全毬導航衛星繫統的測量方法為代錶,利用衛星定位技術實現農機位置的高精度測量,在農業生產中應用最為廣汎;而麵對複雜的田間環境變化,在位置測量中應用多傳感器數據融閤技術通常可以得到更好的測量結果。導航路徑跟蹤控製通常以農機運動學模型或動力學模型為覈心,多採用最優控製、最優估計、自適應控製、人工神經網絡、模糊控製、魯棒控製等現代控製理論與方法;而無模型控製方法則可以避免建模不準確或者模型參數劇烈變化對農機路徑跟蹤控製性能所產生的負麵影響。該文從上述2箇方麵綜述分析瞭農業機械自動導航技術的研究現狀及存在的問題,併對未來農機導航技術的髮展做齣瞭展望,指齣採用衛星導航技術,開展農機地頭自動轉嚮控製、障礙物探測及主動避障、多機協同導航等高級導航技術研究,以及引入先進的物聯網技術,是現代農機自動導航技術髮展的主要趨勢。
농업궤계자동도항시정준농업기술체계중적일항핵심관건기술,엄범응용우경작、파충、시비、분약、수획등농업생산과정。농궤위치측량방법、농궤모형여도항로경근종공제방법시농업궤계자동도항기술적연구중점,수도국내외과연인원적엄범관주。농궤위치측량주요유상대측량화절대측량이류방법,전자이기우궤기시각적측량방법위대표,주요이용도상처리기술식별작물행,진이학정도항기준선,실현농궤여작물적상대위치여항향신식적측량;후자칙이기우전구도항위성계통적측량방법위대표,이용위성정위기술실현농궤위치적고정도측량,재농업생산중응용최위엄범;이면대복잡적전간배경변화,재위치측량중응용다전감기수거융합기술통상가이득도경호적측량결과。도항로경근종공제통상이농궤운동학모형혹동역학모형위핵심,다채용최우공제、최우고계、자괄응공제、인공신경망락、모호공제、로봉공제등현대공제이론여방법;이무모형공제방법칙가이피면건모불준학혹자모형삼수극렬변화대농궤로경근종공제성능소산생적부면영향。해문종상술2개방면종술분석료농업궤계자동도항기술적연구현상급존재적문제,병대미래농궤도항기술적발전주출료전망,지출채용위성도항기술,개전농궤지두자동전향공제、장애물탐측급주동피장、다궤협동도항등고급도항기술연구,이급인입선진적물련망기술,시현대농궤자동도항기술발전적주요추세。
The automatic guidance of agriculture vehicles is a key technology in precision agriculture and widely used in agriculture production. A review of the recent research in agriculture vehicle automatic guidance is presented in this paper, focusing on the position measurement, agriculture models and path tracking. And some forecasts are made on the trends of the agriculture vehicle automatic guidance. Generally, a modern agriculture vehicle automatic guidance system consists of 4 units: A detecting unit that measures the position and orientation of the vehicle; a control unit, as the core of the guidance system, which makes the plan of the path and carries out the path tracking; an executing unit that makes the turn of the wheels according to the command of the control unit; and a monitoring unit, or a field computer as it is called generally, which works as the interface between human and machine. There are 2 main problems to be solved in the agriculture vehicle guidance system. The first one is the measurement of the agriculture vehicle’s working conditions, such as its position, heading, speed and wheel angle, among which the most important is the position measurement. There are 2 kinds of position measurement methods: One is the relative method, such as measuring the vehicle’s position relative to a guidance baseline based on machine vision; the other is the absolute method, such as measuring the vehicle’s absolute position on the earth based on the Global Navigation Satellite System. As the agriculture vehicle automatic guidance system is working in the field, the complicated and non-structured environment makes none of the measurement methods working well all the time. So the multi-sensor data fusion is brought into sharp focus by researchers. By combining measuring data from different sensors with some data fusing methods, such as Kalman filter, particle filter, H∞ filter, and intelligent methods, the measurement accuracy is improved. The integrated navigation systems are mainly GPS/INS, GPS/DR and INS/CNS. The second problem is agriculture modeling and path tracking control methods. Most of the path tracking control algorithms use kinematics models. The two-wheel model is the most frequently used model, in which an agriculture vehicle is regarded as a two-wheel vehicle and its pose is described by its geographical coordinates, heading, wheel angle and speed. Dynamics models based on the Newton second law are another kind of model commonly used. As it takes into account of the change of the vehicle’s dynamic characteristics with the external environment and the farm implements, it makes the control algorithms more robust. Besides the control methods based on models, researchers have developed some kind of algorithm without a model. The PID is the most useful control strategy. Another one is the pure pursuit method which simulates the driving behavior of human and has foresight. Nowadays, the agriculture vehicle automatic navigation technologies have widely used in the agriculture production, but many problems still need to be studied further. The advanced navigation technologies are worth studying, such as the headland turning control, obstacle detecting and active collision avoidance, and cooperative navigation by multi vehicles. And the agriculture vehicle internet of things is another interesting research area.