化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
6期
2343-2350
,共8页
王东光%张仁坤%竺柏康%王玉华%陶亨聪
王東光%張仁坤%竺柏康%王玉華%陶亨聰
왕동광%장인곤%축백강%왕옥화%도형총
反应工程%混合%纳米材料%超重力%撞击流%膜包覆
反應工程%混閤%納米材料%超重力%撞擊流%膜包覆
반응공정%혼합%납미재료%초중력%당격류%막포복
reaction engineering%mixing%nanomaterials%high gravity%impinging stream%film-coating
一种基于二次旋转的高频撞击流反应器实现了连续快速制备核壳型纳米复合粒子的工艺过程。该反应器将均相成核与异相成核过程耦合在一起,并显著强化了液液多尺度混合过程。通过制备 Fe3O4/MnOOH 纳米复合粒子,初步探究了包覆率、主流量、支流总量和撞击点位置对包覆过程宏观与本征动力学过程的影响。发现了反应器存在的一些不足之处及改进方法。反应器经不断改进,有望实现大规模、低成本、高质量生产各种纳米复合粒子的工艺过程。
一種基于二次鏇轉的高頻撞擊流反應器實現瞭連續快速製備覈殼型納米複閤粒子的工藝過程。該反應器將均相成覈與異相成覈過程耦閤在一起,併顯著彊化瞭液液多呎度混閤過程。通過製備 Fe3O4/MnOOH 納米複閤粒子,初步探究瞭包覆率、主流量、支流總量和撞擊點位置對包覆過程宏觀與本徵動力學過程的影響。髮現瞭反應器存在的一些不足之處及改進方法。反應器經不斷改進,有望實現大規模、低成本、高質量生產各種納米複閤粒子的工藝過程。
일충기우이차선전적고빈당격류반응기실현료련속쾌속제비핵각형납미복합입자적공예과정。해반응기장균상성핵여이상성핵과정우합재일기,병현저강화료액액다척도혼합과정。통과제비 Fe3O4/MnOOH 납미복합입자,초보탐구료포복솔、주류량、지류총량화당격점위치대포복과정굉관여본정동역학과정적영향。발현료반응기존재적일사불족지처급개진방법。반응기경불단개진,유망실현대규모、저성본、고질량생산각충납미복합입자적공예과정。
In order to realize continuously and rapidly prepare core-shell structured nanoparticles, a high-frequency impinging stream (HFIS) reactor is explored on the basis of the secondary rotation principle. In this reactor, not only the homogeneous nucleation and heterogeneous nucleation are coupled together, but the liquid-liquid multi-scale mixings are greatly intensified. And then, well-defined nano Fe3O4/MnOOH composites were fleetly obtained. The influences of four parameters on the macro and intrinsic kinetics of the coating process were investigated and discussed. Experimental results revealed that low coating ratio prolonged the induction period. Higher initial flux of the main stream intensified the initial dispersion, meso-mixing and micro-mixing. With the total flux of the branch streams being lowered, the initial dispersion was bad off. Furthermore, the computational fluid dynamics (CFD) simulations indicated that the inner layer of the S-shaped main stream had lower pressure and higher flow rate distributions. Therefore, the impinging points should be located in there. Two design defects of the reactor were found, and the corresponding improved schemes were proposed. Through continuous improvement, this reactor is promisingly used for the large-scaled, low-cost and high-quality production of various core-shell nanomaterials.