合肥工业大学学报(自然科学版)
閤肥工業大學學報(自然科學版)
합비공업대학학보(자연과학판)
JOURNAL OF HEFEI UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE)
2015年
5期
600-604
,共5页
相控开关%预测%遗传算法%神经网络%粒子群优化(PSO )
相控開關%預測%遺傳算法%神經網絡%粒子群優化(PSO )
상공개관%예측%유전산법%신경망락%입자군우화(PSO )
phase-controlled switching%forecasting%genetic algorithm(GA)%neural network%particle swarm optimization(PSO)
为了提高相控开关动作时间预测精度,抑制电容器投切产生的过电压和涌流,文章建立了以控制电压和环境温度为输入的前馈网络预测模型;为了提高模型预测精度,提出基于遗传算法(genetic algorithm ,GA )和粒子群算法优化神经网络的补偿方法,并对算法优化前、后网络预测性能进行比较。研究结果表明,经过遗传算法和粒子群优化后的前向神经网络模型比没有优化的有更好的预测精度。
為瞭提高相控開關動作時間預測精度,抑製電容器投切產生的過電壓和湧流,文章建立瞭以控製電壓和環境溫度為輸入的前饋網絡預測模型;為瞭提高模型預測精度,提齣基于遺傳算法(genetic algorithm ,GA )和粒子群算法優化神經網絡的補償方法,併對算法優化前、後網絡預測性能進行比較。研究結果錶明,經過遺傳算法和粒子群優化後的前嚮神經網絡模型比沒有優化的有更好的預測精度。
위료제고상공개관동작시간예측정도,억제전용기투절산생적과전압화용류,문장건립료이공제전압화배경온도위수입적전궤망락예측모형;위료제고모형예측정도,제출기우유전산법(genetic algorithm ,GA )화입자군산법우화신경망락적보상방법,병대산법우화전、후망락예측성능진행비교。연구결과표명,경과유전산법화입자군우화후적전향신경망락모형비몰유우화적유경호적예측정도。
To improve the action time forecasting accuracy in phase‐controlled switching ,and suppress the overvoltage and inrush current generated by capacitor switching ,an operating time forecasting model is developed .This model is a BP neural network with the control voltage and temperature as in‐put variables .To improve the action time forecasting accuracy of the model ,the optimization method of neural network with genetic algorithm (GA) or particle swarm optimization(PSO) is proposed .The performance of the neural network model with GA or PSO is compared with that without optimiza‐tion .The research results show that the BP neural network model optimized with GA or PSO posses‐ses better forecasting accuracy than that without optimization .