化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
6期
2139-2149
,共11页
改进核主成分分析%流形学习%费舍尔判别分析%故障检测%诊断%仿真实验
改進覈主成分分析%流形學習%費捨爾判彆分析%故障檢測%診斷%倣真實驗
개진핵주성분분석%류형학습%비사이판별분석%고장검측%진단%방진실험
modified kernel principal component analysis%manifold learning%Fisher discriminant analysis%fault detection%diagnosis%simulation
针对传统基于核主成分分析的故障检测方法提取非线性特征时只考虑全局结构而忽略局部近邻结构保持的问题,提出基于改进核主成分分析的故障检测与诊断方法。改进核主成分分析方法将流形学习保持局部结构的思想融入核主成分分析的目标函数中,使得到的特征空间不仅具有原始样本空间的整体结构,还保持样本空间相似的局部近邻结构,可以包含更丰富的特征信息。在此基础上,本文使用改进核主成分分析方法把原始变量空间映射到特征空间,使用费舍尔判别分析在特征空间中构建距离统计量并通过核密度估计确定其控制限,进一步利用相似度的性能诊断方法识别发生的故障类型。采用Tennessee Eastman过程故障检测数据集进行的仿真实验表明所提方法可以取得较好的效果。
針對傳統基于覈主成分分析的故障檢測方法提取非線性特徵時隻攷慮全跼結構而忽略跼部近鄰結構保持的問題,提齣基于改進覈主成分分析的故障檢測與診斷方法。改進覈主成分分析方法將流形學習保持跼部結構的思想融入覈主成分分析的目標函數中,使得到的特徵空間不僅具有原始樣本空間的整體結構,還保持樣本空間相似的跼部近鄰結構,可以包含更豐富的特徵信息。在此基礎上,本文使用改進覈主成分分析方法把原始變量空間映射到特徵空間,使用費捨爾判彆分析在特徵空間中構建距離統計量併通過覈密度估計確定其控製限,進一步利用相似度的性能診斷方法識彆髮生的故障類型。採用Tennessee Eastman過程故障檢測數據集進行的倣真實驗錶明所提方法可以取得較好的效果。
침대전통기우핵주성분분석적고장검측방법제취비선성특정시지고필전국결구이홀략국부근린결구보지적문제,제출기우개진핵주성분분석적고장검측여진단방법。개진핵주성분분석방법장류형학습보지국부결구적사상융입핵주성분분석적목표함수중,사득도적특정공간불부구유원시양본공간적정체결구,환보지양본공간상사적국부근린결구,가이포함경봉부적특정신식。재차기출상,본문사용개진핵주성분분석방법파원시변량공간영사도특정공간,사용비사이판별분석재특정공간중구건거리통계량병통과핵밀도고계학정기공제한,진일보이용상사도적성능진단방법식별발생적고장류형。채용Tennessee Eastman과정고장검측수거집진행적방진실험표명소제방법가이취득교호적효과。
The traditional kernel principal component analysis is popularly used for fault detection, however, it only concentrates on the global structure of data sets and ignores the local structure when it is used to extract the nonlinear features. To solve the problem, a new method named modified kernel principal component analysis is proposed for nonlinear process fault detection and diagnosis. The idea of locality preserving is incorporated into the optimization goal of the traditional kernel principal component analysis, taking the excellence of kernel principal component analysis and manifold learning into account. The new projection space enjoys the similar global structure and the local structure, and thus, more feature information can be extracted. The modified kernel principal component analysis is used to map the data space into the feature space. Next, the feature information is classified through Fisher discriminant analysis. A monitoring statistic is established using the distance of each sample in feature space and its control limit is determined through kernel density estimation. When a fault is detected, the source of performance deterioration can be located by using a diagnosis method based on data set similarity. Finally, the results of Tennessee Eastman simulation experiment show its better effectiveness.