电子测量与仪器学报
電子測量與儀器學報
전자측량여의기학보
JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT
2015年
5期
701-707
,共7页
Turbo码%归零状态%类型识别%拆分和组合%一阶累积量
Turbo碼%歸零狀態%類型識彆%拆分和組閤%一階纍積量
Turbo마%귀령상태%류형식별%탁분화조합%일계루적량
Turbo codes%trills termination state%type identification%splitting and combining%first order cumulant
提出一种有效的识别方法,解决了Turbo编码类型的盲识别问题。首先,在理论分析Turbo码固有结构的基础上,通过特定的拆分和组合方式从Turbo编码序列中获取一路递归系统卷积码,和二路线性分组码,从而根据此特性利用秩统计的方法实现Turbo码的判别;然后对递归系统卷积码输出数据进行差分运算,推导出差分后结果仅与寄存器中存放的数据有关,因此通过一阶累积量的方法可以准确获取归零状态的位置,从而实现对Turbo码的归零特性判别。仿真结果表明:该方法能够实现对Turbo编码类型的识别,且具有较好的容错性能,最后也验证了该方法在较高误码条件下具有较好的识别效果。
提齣一種有效的識彆方法,解決瞭Turbo編碼類型的盲識彆問題。首先,在理論分析Turbo碼固有結構的基礎上,通過特定的拆分和組閤方式從Turbo編碼序列中穫取一路遞歸繫統捲積碼,和二路線性分組碼,從而根據此特性利用秩統計的方法實現Turbo碼的判彆;然後對遞歸繫統捲積碼輸齣數據進行差分運算,推導齣差分後結果僅與寄存器中存放的數據有關,因此通過一階纍積量的方法可以準確穫取歸零狀態的位置,從而實現對Turbo碼的歸零特性判彆。倣真結果錶明:該方法能夠實現對Turbo編碼類型的識彆,且具有較好的容錯性能,最後也驗證瞭該方法在較高誤碼條件下具有較好的識彆效果。
제출일충유효적식별방법,해결료Turbo편마류형적맹식별문제。수선,재이론분석Turbo마고유결구적기출상,통과특정적탁분화조합방식종Turbo편마서렬중획취일로체귀계통권적마,화이로선성분조마,종이근거차특성이용질통계적방법실현Turbo마적판별;연후대체귀계통권적마수출수거진행차분운산,추도출차분후결과부여기존기중존방적수거유관,인차통과일계루적량적방법가이준학획취귀령상태적위치,종이실현대Turbo마적귀령특성판별。방진결과표명:해방법능구실현대Turbo편마류형적식별,차구유교호적용착성능,최후야험증료해방법재교고오마조건하구유교호적식별효과。
An effective approach of type identification of turbo code is proposed in this paper .Because of the specific structure of the turbo code, a recursive systematic convolutional code and two linear block codes can be obtained by a particular way of splitting and combining from the turbo coding sequences.Therefore, the turbo code is detemined that uses the method of rank statistic from unknow channel codes based on this feature.Then, the output data of the recursive systematic convolutional code is differential operation .Since the computing result only related with storing data of the register, the position of trilles termination state of turbo code on trellis termination can be caculated accu-rately by a first-order cumulant method.Through this way, turbo code on trellis termination and turbo code with trel-lis termination can be distingushed.The simulation experiment show the correctable results of this recognition method and the approch has better error-tolerance.Consequently, under the case of high BER, this paper also proves that this recognition method holds good performance.