光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2015年
6期
1551-1555
,共5页
李梦华%李景明%李军会%张录达%赵龙莲
李夢華%李景明%李軍會%張錄達%趙龍蓮
리몽화%리경명%리군회%장록체%조룡련
葡萄酒%品种%近红外光谱法%循环伏安法%D-S证据理论
葡萄酒%品種%近紅外光譜法%循環伏安法%D-S證據理論
포도주%품충%근홍외광보법%순배복안법%D-S증거이론
Red wine%Variety%Near Infrared Spectroscopy%Cyclic Voltammetry%D-S evidence theory
提出一种将循环伏安电化学法和近红外光谱法联立,用PLS‐DA的D‐S证据理论融合二者信息进行葡萄酒品种溯源研究的方法。分别采集来自不同产区的三类不同品种的171个干红葡萄酒样品的循环伏安曲线和近红外透射光谱。用PLS‐DA法分别建立循环伏安电化学法和近红外光谱法的判别模型,以此为证据;用两个证据的D‐S合成规则实现近红外判别结果与循环伏安法判别结果的重新决策。融合后的结果为:多产区不同品种葡萄酒溯源模型的建模集准确率为95.69%,检验集准确率为94.12%;单一产区不同品种葡萄酒溯源模型的建模集准确率为99.46%,检验集准确率为100%;判别结果都比融合前单一循环伏安电化学法和近红外光谱法的判别准确率得到了提高。实验结果表明,该方法具有较高的溯源识别准确度,可以快速准确地对待测葡萄酒品种进行定性检测。
提齣一種將循環伏安電化學法和近紅外光譜法聯立,用PLS‐DA的D‐S證據理論融閤二者信息進行葡萄酒品種溯源研究的方法。分彆採集來自不同產區的三類不同品種的171箇榦紅葡萄酒樣品的循環伏安麯線和近紅外透射光譜。用PLS‐DA法分彆建立循環伏安電化學法和近紅外光譜法的判彆模型,以此為證據;用兩箇證據的D‐S閤成規則實現近紅外判彆結果與循環伏安法判彆結果的重新決策。融閤後的結果為:多產區不同品種葡萄酒溯源模型的建模集準確率為95.69%,檢驗集準確率為94.12%;單一產區不同品種葡萄酒溯源模型的建模集準確率為99.46%,檢驗集準確率為100%;判彆結果都比融閤前單一循環伏安電化學法和近紅外光譜法的判彆準確率得到瞭提高。實驗結果錶明,該方法具有較高的溯源識彆準確度,可以快速準確地對待測葡萄酒品種進行定性檢測。
제출일충장순배복안전화학법화근홍외광보법련립,용PLS‐DA적D‐S증거이론융합이자신식진행포도주품충소원연구적방법。분별채집래자불동산구적삼류불동품충적171개간홍포도주양품적순배복안곡선화근홍외투사광보。용PLS‐DA법분별건립순배복안전화학법화근홍외광보법적판별모형,이차위증거;용량개증거적D‐S합성규칙실현근홍외판별결과여순배복안법판별결과적중신결책。융합후적결과위:다산구불동품충포도주소원모형적건모집준학솔위95.69%,검험집준학솔위94.12%;단일산구불동품충포도주소원모형적건모집준학솔위99.46%,검험집준학솔위100%;판별결과도비융합전단일순배복안전화학법화근홍외광보법적판별준학솔득도료제고。실험결과표명,해방법구유교고적소원식별준학도,가이쾌속준학지대대측포도주품충진행정성검측。
To achieve the traceability of wine varieties ,a method was proposed to fuse Near‐infrared (NIR) spectra and cyclic voltammograms (CV) which contain different information using D‐S evidence theory .NIR spectra and CV curves of three differ‐ent varieties of wines (cabernet sauvignon ,merlot ,cabernet gernischt ) which come from seven different geographical origins were collected separately .The discriminant models were built using PLS‐DA method .Based on this ,D‐S evidence theory was then applied to achieve the integration of the two kinds of discrimination results .After integrated by D‐S evidence theory ,the ac‐curacy rate of cross‐validation is 95.69% and validation set is 94.12% for wine variety identification .When only considering the wine that come from Yantai ,the accuracy rate of cross‐validation is 99.46% and validation set is 100% .All the traceability models after fusion achieved better results on classification than individual method .These results suggest that the proposed method combining electrochemical information with spectral information using the D‐S evidence combination formula is benefit to the improvement of model discrimination effect ,and is a promising tool for discriminating different kinds of wines .