光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2015年
6期
1488-1492
,共5页
余良武%田洪祥%明廷锋%杨琨
餘良武%田洪祥%明廷鋒%楊琨
여량무%전홍상%명정봉%양곤
船舶机械%润滑油%水分含量%测量%中红外LED
船舶機械%潤滑油%水分含量%測量%中紅外LED
선박궤계%윤활유%수분함량%측량%중홍외LED
Ship machinery%Lubricating oil%Water concentration%measurements%Mid-infrared LED
针对船舶机械润滑油中水分含量的测量问题,研究了基于中红外L ED的油液水分含量测量方法。利用峰值发射波长为2840 nm ,半高宽为400 nm的中红外L ED作为发射光源,发射的红外光进入油样,一部分被吸收,剩下的透过油样被红外探测器接收,根据油样对光能的吸光度确定油液中水分含量。实验设计了红外光发射、吸收和探测的装置,采用氟化钙晶片作为窗片,选择截面为圆形的硬质金属线圈作为垫圈以保证精确的油膜厚度,采用探测波长范围为2500~4800 nm ,响应时间为10~20 ns的光电二极管作为光强探测器。开发了信号的前置放大和基于单片机的数据采集、储存和通讯系统。通过实验,获得了含水质量分数为0,0.0625%,0.125%,0.25%,0.375%和0.5%六个油样的吸光度数据,利用最小二乘法对数据进行拟合,得到吸光度和含水量的线性回归方程。对误差进行量化分析,回归方程和数据点的决定系数为0.996。最后,为了检验该测量方法的精确性,用含水量为0.3175%的油样进行验证,利用实验装置测量吸光度,代入回归方程计算含水量,结果显示通过该方法测得的含水量和实际含水量的相对误差为2.7%,满足工程实际需求,说明该方法能够准确测量油液中的含水量。
針對船舶機械潤滑油中水分含量的測量問題,研究瞭基于中紅外L ED的油液水分含量測量方法。利用峰值髮射波長為2840 nm ,半高寬為400 nm的中紅外L ED作為髮射光源,髮射的紅外光進入油樣,一部分被吸收,剩下的透過油樣被紅外探測器接收,根據油樣對光能的吸光度確定油液中水分含量。實驗設計瞭紅外光髮射、吸收和探測的裝置,採用氟化鈣晶片作為窗片,選擇截麵為圓形的硬質金屬線圈作為墊圈以保證精確的油膜厚度,採用探測波長範圍為2500~4800 nm ,響應時間為10~20 ns的光電二極管作為光彊探測器。開髮瞭信號的前置放大和基于單片機的數據採集、儲存和通訊繫統。通過實驗,穫得瞭含水質量分數為0,0.0625%,0.125%,0.25%,0.375%和0.5%六箇油樣的吸光度數據,利用最小二乘法對數據進行擬閤,得到吸光度和含水量的線性迴歸方程。對誤差進行量化分析,迴歸方程和數據點的決定繫數為0.996。最後,為瞭檢驗該測量方法的精確性,用含水量為0.3175%的油樣進行驗證,利用實驗裝置測量吸光度,代入迴歸方程計算含水量,結果顯示通過該方法測得的含水量和實際含水量的相對誤差為2.7%,滿足工程實際需求,說明該方法能夠準確測量油液中的含水量。
침대선박궤계윤활유중수분함량적측량문제,연구료기우중홍외L ED적유액수분함량측량방법。이용봉치발사파장위2840 nm ,반고관위400 nm적중홍외L ED작위발사광원,발사적홍외광진입유양,일부분피흡수,잉하적투과유양피홍외탐측기접수,근거유양대광능적흡광도학정유액중수분함량。실험설계료홍외광발사、흡수화탐측적장치,채용불화개정편작위창편,선택절면위원형적경질금속선권작위점권이보증정학적유막후도,채용탐측파장범위위2500~4800 nm ,향응시간위10~20 ns적광전이겁관작위광강탐측기。개발료신호적전치방대화기우단편궤적수거채집、저존화통신계통。통과실험,획득료함수질량분수위0,0.0625%,0.125%,0.25%,0.375%화0.5%륙개유양적흡광도수거,이용최소이승법대수거진행의합,득도흡광도화함수량적선성회귀방정。대오차진행양화분석,회귀방정화수거점적결정계수위0.996。최후,위료검험해측량방법적정학성,용함수량위0.3175%적유양진행험증,이용실험장치측량흡광도,대입회귀방정계산함수량,결과현시통과해방법측득적함수량화실제함수량적상대오차위2.7%,만족공정실제수구,설명해방법능구준학측량유액중적함수량。
A method that could be used to quantify the water concentration in ship machinery lubricating oil based on Mid‐infra‐red LED is discussed .A Mid‐infrared LED with peak emission wavelength of 2 840 nm and FWHM of 400 nm is used as the light source ,the emitting light is partly absorbed by the oil sample ,the remaining is received by the infrared detector .The per‐centage of water is determined according to the absorbance .In the experiment ,a optical configuration including the transmis‐sion ,absorbing and receiving of infrared light is designed ,calcium fluoride wafer is used as the window ,a hard metal coil with circular section is selected as the washer to get the fixed thickness of oil film accurately ,a photoelectric diode with detection wavelength of 2 500~4 800 nm and response time of 10~20 ns is used as the detector of light intensity .Matching with this ,a system of signal preamplifier ,microcontroller‐based data acquisition ,storage and communication is developed .Absorbance data of six oil samples with different water mass concentration :0 ,0.062 5% ,0.125% ,0.25% ,0.375% and 0.5% is acquired through experiment .Fitting the data by the method of least squares ,a linear equation in terms of absorbance and water concen‐tration is obtained ,and the determination coefficient is 0.996 .Finally ,in order to test the accuracy of this measurement method , using oil sample with water concentration of 0.317 5% to validate the equation ,measuring the absorbance by the experimental device ,the water content is calculated through the linear equation ,the results show that the relative error is 2.7% between the percentage calculated and the real sample ,indicating that this method can accurately measure the water concentration in the oil .