中华消化内镜杂志
中華消化內鏡雜誌
중화소화내경잡지
CHINESE JOURNAL OF DIGESTIVE ENDOSCOPY
2015年
4期
225-228
,共4页
朱建伟%王雷%储怡宁%侯晓佳%周银火%汪源源%金震东%李兆申
硃建偉%王雷%儲怡寧%侯曉佳%週銀火%汪源源%金震東%李兆申
주건위%왕뢰%저이저%후효가%주은화%왕원원%금진동%리조신
自身免疫性胰腺炎%慢性胰腺炎%内镜超声检查术%图像分析%支撑向量机
自身免疫性胰腺炎%慢性胰腺炎%內鏡超聲檢查術%圖像分析%支撐嚮量機
자신면역성이선염%만성이선염%내경초성검사술%도상분석%지탱향량궤
Autoimmune pancreatitis%Chronic pancreatitis%Endoscopic ultrasonograghy%Digital imaging processing%Support vector machine
目的探讨数字图像处理技术在超声内镜鉴别诊断自身免疫性胰腺炎与慢性胰腺炎中的应用价值。方法回顾2005年5月至2013年1月确诊的100例慢性胰腺炎和81例自身免疫性胰腺炎患者的内镜超声图像,选择具有病变典型表现的内镜超声图像和勾画的感兴趣区域,通过计算机提取胰腺分类系统中的9大类105维特征,采用类间距法和顺序前进法筛选纹理特征的最优特征组合,通过支撑向量机建立分类模型,使用2种不同的样本集划分方法对慢性胰腺炎和自身免疫性胰腺炎病例进行自动分类,统计分类的准确率、敏感度、特异度、阳性预测值和阴性预测值。结果最优纹理特征组合包括5大类25维特征,此时准确分类率达最大(90.08%)。181例病例采用均匀划分样本集法和留一法随机划分为训练集和测试集,共进行200次随机检验,均匀划分样本集法最终分类准确率为(86.04±3.15)%、敏感度为(83.66±6.57)%、特异度为(88.54±4.37)%、阳性预测值为(85.96±4.44)%、阴性预测值为(87.12±4.39)%。结论计算机辅助的图像分析技术具有客观性、无创性,能够提高内镜超声识别自身免疫性胰腺炎的准确率,为自身免疫性胰腺炎诊断提供了一个新的有价值的研究方向。
目的探討數字圖像處理技術在超聲內鏡鑒彆診斷自身免疫性胰腺炎與慢性胰腺炎中的應用價值。方法迴顧2005年5月至2013年1月確診的100例慢性胰腺炎和81例自身免疫性胰腺炎患者的內鏡超聲圖像,選擇具有病變典型錶現的內鏡超聲圖像和勾畫的感興趣區域,通過計算機提取胰腺分類繫統中的9大類105維特徵,採用類間距法和順序前進法篩選紋理特徵的最優特徵組閤,通過支撐嚮量機建立分類模型,使用2種不同的樣本集劃分方法對慢性胰腺炎和自身免疫性胰腺炎病例進行自動分類,統計分類的準確率、敏感度、特異度、暘性預測值和陰性預測值。結果最優紋理特徵組閤包括5大類25維特徵,此時準確分類率達最大(90.08%)。181例病例採用均勻劃分樣本集法和留一法隨機劃分為訓練集和測試集,共進行200次隨機檢驗,均勻劃分樣本集法最終分類準確率為(86.04±3.15)%、敏感度為(83.66±6.57)%、特異度為(88.54±4.37)%、暘性預測值為(85.96±4.44)%、陰性預測值為(87.12±4.39)%。結論計算機輔助的圖像分析技術具有客觀性、無創性,能夠提高內鏡超聲識彆自身免疫性胰腺炎的準確率,為自身免疫性胰腺炎診斷提供瞭一箇新的有價值的研究方嚮。
목적탐토수자도상처리기술재초성내경감별진단자신면역성이선염여만성이선염중적응용개치。방법회고2005년5월지2013년1월학진적100례만성이선염화81례자신면역성이선염환자적내경초성도상,선택구유병변전형표현적내경초성도상화구화적감흥취구역,통과계산궤제취이선분류계통중적9대류105유특정,채용류간거법화순서전진법사선문리특정적최우특정조합,통과지탱향량궤건립분류모형,사용2충불동적양본집화분방법대만성이선염화자신면역성이선염병례진행자동분류,통계분류적준학솔、민감도、특이도、양성예측치화음성예측치。결과최우문리특정조합포괄5대류25유특정,차시준학분류솔체최대(90.08%)。181례병례채용균균화분양본집법화류일법수궤화분위훈련집화측시집,공진행200차수궤검험,균균화분양본집법최종분류준학솔위(86.04±3.15)%、민감도위(83.66±6.57)%、특이도위(88.54±4.37)%、양성예측치위(85.96±4.44)%、음성예측치위(87.12±4.39)%。결론계산궤보조적도상분석기술구유객관성、무창성,능구제고내경초성식별자신면역성이선염적준학솔,위자신면역성이선염진단제공료일개신적유개치적연구방향。
Objective To explore the feasibility of using digital imaging processing (DIP)to extract EUS image parameters for the differential diagnosis of autoimmune pancreatitis (AIP)and chronic pancreati-tis (CP).Methods A total of 81 patients with AIP and 100 patients with CP diagnosed from May 2005 to January 2013 were recruited to this study.A total of 105 parameters of 9 categories were extracted from the region of interest by using computer-based techniques.Then the distance between class algorithm and se-quential forward selection (SFS)algorithm were used for a better combination of features.A support vector machine (SVM)predictive model was built,trained,and validated.Results Overall,25 parameters of 5 categories were selected as a better combination of features when the incidence of accurate category was max (90.08%).A total of 181 sample sets were randomly divided into a training set and a testing set by using two different algorithms and 200 random tests were performed.The average accuracy,sensitivity,specificity, the positive and negative predictive values of AIP based on the half-and-half method were (86.04 ± 3.15)%,(83.66 ±6.57)%,(88.54 ±4.37)%,(85.96 ±4.44)% and (87.12 ±4.39)%,respective-ly.Conclusion Computer-aided diagnosis of EUS images is objective and non-invasive,which can improve the accuracy in differentiating AIP from CP.This technology provides a new valuable diagnostic tool for the clinical determination of AIP.