广州化工
廣州化工
엄주화공
GUANGZHOU CHEMICAL INDUSTRY AND TECHNOLOGY
2015年
10期
73-76,103
,共5页
铟%二氧化钛%三磷酸腺苷%吸附与缓释%性能调控
銦%二氧化鈦%三燐痠腺苷%吸附與緩釋%性能調控
인%이양화태%삼린산선감%흡부여완석%성능조공
indium%titanium dioxide%adenosine triphosphate%adsorption and release%performance control
以固相反应法所合成的铟、硫掺杂二氧化钛纳米粉体为载体,研究了三磷酸腺苷( ATP)的吸附与缓释行为。结果表明,以TiO2为基体的纳米材料对ATP都有良好的吸附作用。40 min内, Inx-S-TiO2(x=0.01,0.02,0.03,0.04,0.05)、 S-TiO2和TiO2纳米粉体对ATP的吸附率(%)依次为82.3、91.5、98.6、93.7、89.2、75.7和66.0。其中In0.03-S-TiO2纳米粉体的载药量比纯TiO2提高了32.6%。 In的含量与其吸附ATP的量呈抛物线型。纯TiO2及In、 S改性纳米材料对ATP的释放均有一定的调控作用。5.5 h内,其释药百分比分别为In0.01-S-TiO2(61.4%)>In0.05-S-TiO2(59.23%)>In0.02-S-TiO2(57.9%)>In0.04-S-TiO2(55.30%)>In0.03-S-TiO2(51.45%)>TiO2(37.5%)>S-TiO2(25.8%)。 In的掺杂,对S-TiO2纳米材料缓释ATP的速率起到明显缓释控制作用。 ATP的缓释过程符合骨架溶蚀扩散机理。 In在ATP释放过程中的流失量很少,均不足2%。 In含量的变化对微球的突释效应有一定的调控作用。
以固相反應法所閤成的銦、硫摻雜二氧化鈦納米粉體為載體,研究瞭三燐痠腺苷( ATP)的吸附與緩釋行為。結果錶明,以TiO2為基體的納米材料對ATP都有良好的吸附作用。40 min內, Inx-S-TiO2(x=0.01,0.02,0.03,0.04,0.05)、 S-TiO2和TiO2納米粉體對ATP的吸附率(%)依次為82.3、91.5、98.6、93.7、89.2、75.7和66.0。其中In0.03-S-TiO2納米粉體的載藥量比純TiO2提高瞭32.6%。 In的含量與其吸附ATP的量呈拋物線型。純TiO2及In、 S改性納米材料對ATP的釋放均有一定的調控作用。5.5 h內,其釋藥百分比分彆為In0.01-S-TiO2(61.4%)>In0.05-S-TiO2(59.23%)>In0.02-S-TiO2(57.9%)>In0.04-S-TiO2(55.30%)>In0.03-S-TiO2(51.45%)>TiO2(37.5%)>S-TiO2(25.8%)。 In的摻雜,對S-TiO2納米材料緩釋ATP的速率起到明顯緩釋控製作用。 ATP的緩釋過程符閤骨架溶蝕擴散機理。 In在ATP釋放過程中的流失量很少,均不足2%。 In含量的變化對微毬的突釋效應有一定的調控作用。
이고상반응법소합성적인、류참잡이양화태납미분체위재체,연구료삼린산선감( ATP)적흡부여완석행위。결과표명,이TiO2위기체적납미재료대ATP도유량호적흡부작용。40 min내, Inx-S-TiO2(x=0.01,0.02,0.03,0.04,0.05)、 S-TiO2화TiO2납미분체대ATP적흡부솔(%)의차위82.3、91.5、98.6、93.7、89.2、75.7화66.0。기중In0.03-S-TiO2납미분체적재약량비순TiO2제고료32.6%。 In적함량여기흡부ATP적량정포물선형。순TiO2급In、 S개성납미재료대ATP적석방균유일정적조공작용。5.5 h내,기석약백분비분별위In0.01-S-TiO2(61.4%)>In0.05-S-TiO2(59.23%)>In0.02-S-TiO2(57.9%)>In0.04-S-TiO2(55.30%)>In0.03-S-TiO2(51.45%)>TiO2(37.5%)>S-TiO2(25.8%)。 In적참잡,대S-TiO2납미재료완석ATP적속솔기도명현완석공제작용。 ATP적완석과정부합골가용식확산궤리。 In재ATP석방과정중적류실량흔소,균불족2%。 In함량적변화대미구적돌석효응유일정적조공작용。
The adsorption and release behavior of adenosine triphosphate ( ATP) were investigated on the surface of indium, sulfur doped titanium dioxide nanomaterials prepared by solid-state reaction method. The results showed that, the favorable adsorption properties of ATP on these nanomaterials were presented. Within 40 min, the adsorption ratio of ATP was 82. 3%, 91. 5%, 98. 6%, 93. 7%, 89. 2%, 75. 7% and 66. 0% corresponding for In0. 01-S-TiO2 , In0. 02-S-TiO2 , In0. 03-S-TiO2 , In0. 04-S-TiO2 , In0. 05-S-TiO2 , S-TiO2 and pure TiO2 , respectively. Thereinto, the drug capacity of ATP was improved 32. 6% on the In0. 03-S-TiO2 nanomaterial rather than pure TiO2. And it was parabola between the content of indium and the adsorption amount of ATP in the Inx-S-TiO2 ( x=0. 01, 0. 02, 0. 03, 0. 04, 0. 05 ) nanomaterials. Simultaneity, the release of ATP is controlled by these nanomaterials. In 5. 5 h, the drug delivery percent of ATP was In0. 01-S-TiO2(61. 4%)>In0. 05-S-TiO2 ( 59. 23%)>In0. 02-S-TiO2 ( 57. 9%)>In0. 04-S-TiO2 ( 55. 30%)>In0. 03-S-TiO2 (51. 45%)>TiO2(37. 5%)>S-TiO2(25. 8%) corresponding sequence in turn. Evidencely, the release rate of ATP on the S-TiO2 nanomaterial surfaces was sustained by the doping of indium. Moreover, the release process of ATP on these nanomaterial surfaces meets the skeleton solution diffusion mechanism and the maxium leaching ratio of indium was less than 2%. The burst release effect of microsphere nanomaterials was affected by the change of indium content.