天文学进展
天文學進展
천문학진전
PROGRESS IN ASTRONOMY
2015年
2期
205-232
,共28页
伽玛射线暴%Li-Paczyński新星%r过程%磁星%黑洞
伽瑪射線暴%Li-Paczyński新星%r過程%磁星%黑洞
가마사선폭%Li-Paczyński신성%r과정%자성%흑동
gamma-ray bursts%Li-Paczy′nski novae%r-process%magnetars%black holes
致密星并合(中子星-中子星并合与中子星-黑洞并合)后抛射出的富中子(neutron rich)物质是合成r过程元素(r-process elements)的重要场所之一,近17年来的理论研究认为,这些r过程元素衰变产生的能量在热化后将形成光学-近红外(Optical-NIR)辐射,这种光学-近红外暂现现象被称为“Li-Paczy′nski 新星(Li-Paczy′nski novae)”,简称为“LP新星”,由于它们的典型峰值亮度约为典型的新星(novae)亮度的1000倍,因此又被称为“千新星(Kilonovae)”。此外,理论与观测都直接或间接地表明致密星并合在一定条件下会形成持续时间较短(T90.2 s)的伽玛射线暴(简称短暴,SGRBs),且大部分短暴可能源自致密星并合。在短暴的余辉被确定后,人们就致力于搜寻伴随短暴的LP新星。介绍近17年来LP新星的理论进展。
緻密星併閤(中子星-中子星併閤與中子星-黑洞併閤)後拋射齣的富中子(neutron rich)物質是閤成r過程元素(r-process elements)的重要場所之一,近17年來的理論研究認為,這些r過程元素衰變產生的能量在熱化後將形成光學-近紅外(Optical-NIR)輻射,這種光學-近紅外暫現現象被稱為“Li-Paczy′nski 新星(Li-Paczy′nski novae)”,簡稱為“LP新星”,由于它們的典型峰值亮度約為典型的新星(novae)亮度的1000倍,因此又被稱為“韆新星(Kilonovae)”。此外,理論與觀測都直接或間接地錶明緻密星併閤在一定條件下會形成持續時間較短(T90.2 s)的伽瑪射線暴(簡稱短暴,SGRBs),且大部分短暴可能源自緻密星併閤。在短暴的餘輝被確定後,人們就緻力于搜尋伴隨短暴的LP新星。介紹近17年來LP新星的理論進展。
치밀성병합(중자성-중자성병합여중자성-흑동병합)후포사출적부중자(neutron rich)물질시합성r과정원소(r-process elements)적중요장소지일,근17년래적이론연구인위,저사r과정원소쇠변산생적능량재열화후장형성광학-근홍외(Optical-NIR)복사,저충광학-근홍외잠현현상피칭위“Li-Paczy′nski 신성(Li-Paczy′nski novae)”,간칭위“LP신성”,유우타문적전형봉치량도약위전형적신성(novae)량도적1000배,인차우피칭위“천신성(Kilonovae)”。차외,이론여관측도직접혹간접지표명치밀성병합재일정조건하회형성지속시간교단(T90.2 s)적가마사선폭(간칭단폭,SGRBs),차대부분단폭가능원자치밀성병합。재단폭적여휘피학정후,인문취치력우수심반수단폭적LP신성。개소근17년래LP신성적이론진전。
Neutron rich matter ejected after compact ob ject merger (neutron star-neutron star merger and neutron star-black hole merger) provides one of the most important environ-ments of syntheses of r-process elements. In recent seventeen years, theoretical studies have proposed that heat produced during the decay of r-process elements can produce optical/near infrared radiation after thermalization. This type of optical/near infrared transients is called Li-Paczy′nski novae, or LP-novae for short. Since the typical peak luminosity of LP-novae is~1000 times brighter than that of typical novae, they are also called Kilonovae. Besides, both theoretical and observational studies have showed, directly or indirectly, that under certain conditions, compact object mergers can produce short gamma-ray bursts (SGRBs for short, T90 . 2 s), and most SGRBs may come from compact ob ject mergers. After the identification of SGRB afterglows, dedicated searches of LP-novae from SGRBs have been taken. In this review we present the theoretical progress of LP-novae. Observational aspect will appear in the upcoming paper.