水利学报
水利學報
수리학보
2015年
5期
584-593
,共10页
CERES-Maize模型%半干旱地区%喷灌%玉米%叶面积指数%干物质质量%产量
CERES-Maize模型%半榦旱地區%噴灌%玉米%葉麵積指數%榦物質質量%產量
CERES-Maize모형%반간한지구%분관%옥미%협면적지수%간물질질량%산량
CERES-Maize model%semi-arid region%sprinkler irrigation%maize%leaf area index%plant biomass%yield
作物模型是确定水氮优化管理措施的有力工具,而模型的率定和验证是模拟结果推广应用的前提。利用内蒙古半干旱区2012、2013年的大型喷灌机条件下玉米水氮充足处理对 CERES-Maize模型的作物品种参数进行率定,其他不同水氮处理进行验证,并应用模型模拟了不同降雨年型下灌水施肥方案对作物产量和氮素淋失量的影响。模型验证结果表明,CERES-Maize模型可以较好地描述该地区不同水氮处理条件下玉米叶面积指数(LAI)在生育期内的变化过程。中、高灌水量处理玉米生育期内 LAI 的模拟精度(标准均方根误差 nRMSE=23.0%~37.7%,一致性指数d=0.612~0.945)优于水分亏缺较严重的处理(nRMSE=31.8%~60.6%,d=0.501~0.878)。产量和收获期干物质质量模拟值与实测值之间的相对误差变化范围为0.1%~17.7%,nRMSE变化范围为7.6%~8.7%,d变化范围为0.758~0.791,吻合程度为优。CERES-Maize模型可用以优化喷灌水氮管理措施。不同降雨年型玉米最优灌水方案为:枯水年灌水次数为10次,灌溉定额为292 mm;平水年和丰水年灌水次数分别为8次和6次,灌溉定额分别为191 mm和95 mm。不同降雨年型最优施肥方案为:基肥的施入量为40 kg/hm2,拔节期和抽穗期的施入量均为60 kg/hm2。优化水氮管理措施不仅能够获得较高的玉米产量,还能减少氮素淋失。
作物模型是確定水氮優化管理措施的有力工具,而模型的率定和驗證是模擬結果推廣應用的前提。利用內矇古半榦旱區2012、2013年的大型噴灌機條件下玉米水氮充足處理對 CERES-Maize模型的作物品種參數進行率定,其他不同水氮處理進行驗證,併應用模型模擬瞭不同降雨年型下灌水施肥方案對作物產量和氮素淋失量的影響。模型驗證結果錶明,CERES-Maize模型可以較好地描述該地區不同水氮處理條件下玉米葉麵積指數(LAI)在生育期內的變化過程。中、高灌水量處理玉米生育期內 LAI 的模擬精度(標準均方根誤差 nRMSE=23.0%~37.7%,一緻性指數d=0.612~0.945)優于水分虧缺較嚴重的處理(nRMSE=31.8%~60.6%,d=0.501~0.878)。產量和收穫期榦物質質量模擬值與實測值之間的相對誤差變化範圍為0.1%~17.7%,nRMSE變化範圍為7.6%~8.7%,d變化範圍為0.758~0.791,吻閤程度為優。CERES-Maize模型可用以優化噴灌水氮管理措施。不同降雨年型玉米最優灌水方案為:枯水年灌水次數為10次,灌溉定額為292 mm;平水年和豐水年灌水次數分彆為8次和6次,灌溉定額分彆為191 mm和95 mm。不同降雨年型最優施肥方案為:基肥的施入量為40 kg/hm2,拔節期和抽穗期的施入量均為60 kg/hm2。優化水氮管理措施不僅能夠穫得較高的玉米產量,還能減少氮素淋失。
작물모형시학정수담우화관리조시적유력공구,이모형적솔정화험증시모의결과추엄응용적전제。이용내몽고반간한구2012、2013년적대형분관궤조건하옥미수담충족처리대 CERES-Maize모형적작물품충삼수진행솔정,기타불동수담처리진행험증,병응용모형모의료불동강우년형하관수시비방안대작물산량화담소림실량적영향。모형험증결과표명,CERES-Maize모형가이교호지묘술해지구불동수담처리조건하옥미협면적지수(LAI)재생육기내적변화과정。중、고관수량처리옥미생육기내 LAI 적모의정도(표준균방근오차 nRMSE=23.0%~37.7%,일치성지수d=0.612~0.945)우우수분우결교엄중적처리(nRMSE=31.8%~60.6%,d=0.501~0.878)。산량화수획기간물질질량모의치여실측치지간적상대오차변화범위위0.1%~17.7%,nRMSE변화범위위7.6%~8.7%,d변화범위위0.758~0.791,문합정도위우。CERES-Maize모형가용이우화분관수담관리조시。불동강우년형옥미최우관수방안위:고수년관수차수위10차,관개정액위292 mm;평수년화봉수년관수차수분별위8차화6차,관개정액분별위191 mm화95 mm。불동강우년형최우시비방안위:기비적시입량위40 kg/hm2,발절기화추수기적시입량균위60 kg/hm2。우화수담관리조시불부능구획득교고적옥미산량,환능감소담소림실。
Crop model is an efficient tool to determine best management practices of irrigation and fertiliza?tion. The calibration and validation of the model is fundamentally important for applying the crop model. In this study,the data obtained from two years (2012 and 2013) experiments of maize conducted in the semi-arid region with varying irrigation and nitrogen levels under sprinkler irrigation were used to calibrate and validate the CERES-Maize model. Then the calibrated and verified model was used to evaluate the ef?fect of irrigation and nitrogen schedules on maize yield and nitrogen leaching under different precipitation patterns. The validation shows that the model is able to well capture the variation in LAI during the maize growing seasons. Irrigation level imposes a more important influence on the model accuracy of LAI than ni?trogen application rate. Furthermore,the model indicates a high accuracy of LAI for the treatments with suffi?cient water supply with a normalized root mean square error (nRMSE) ranging from 23.0 % to 37.7 %, and an index of agreement (d) ranging from 0.612 to 0.945. The model shows a low accuracy of LAI for the treatments with severe water deficits with nRMSE ranging from 31.8 % to 60.6 %, and d ranging from 0.501 to 0.878. The yield and plant biomass at harvest are all in excellent agreement with the field mea?surements with a relative error value ranging from 0.1 % to -17.7 %, and nRMSE ranging from 7.6 % to 8.7 %, and d ranging from 0.758 to 0.791. It is therefore confirmed that the CERES-Maize model can be used to optimize water and nitrogen management practices for sprinkled maize in the semi-arid region. The optimal irrigation amount during a dry year derived from the model is 292 mm applied at ten irrigation events. While the optimal irrigation amount is 191 mm applied at eight events for a normal year and 95 mm applied at six events for a wet year. The recommended optimal nitrogen applied for obtaining high maize yield while reducing nitrogen leaching is 160 kg·hm-2 with 40 kg·hm-2 applied prior to seeding and 60 kg·hm-2 applied during the jointing stage and tasseling stage,respectively.