振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2015年
12期
1-6,34
,共7页
复杂网络%有向无环图支持向量机%滚动轴承%故障诊断
複雜網絡%有嚮無環圖支持嚮量機%滾動軸承%故障診斷
복잡망락%유향무배도지지향량궤%곤동축승%고장진단
complex network%DAG-SVM%rolling bearing%fault diagnosis
针对滚动轴承故障与其演化程度组合类型数量大,一般模式识别方法难以适应的问题,提出基于复杂网络优化的有向无环图支持向量机(CNDAG-SVM)。该方法引入复杂网络理论中相似性测度概念用以评定各样本类型间的分离性质,并以平均相似性测度作为有效度量样本类型可区分程度的测度对有向无环图叶节点类型进行排序,依次提取对应二元分类器构造较优有向无环图拓扑结构,缓解误差累积效应的同时提高了结构上层节点的容错能力,获得较高的正确识别率。利用局部均值分解方法提取乘积函数(Production Function,PF)分量波峰系数、峭度系数及能量构造特征向量,将其输入 CNDAG-SVM分类器中用于区分滚动轴承的故障类型与演化程度。对滚动轴承内圈故障、外圈故障及滚动体故障振动信号的分析结果表明,该方法能准确有效识别故障类型与其演化程度,较之传统多元分类支持向量机具有更高的识别精度和效率。
針對滾動軸承故障與其縯化程度組閤類型數量大,一般模式識彆方法難以適應的問題,提齣基于複雜網絡優化的有嚮無環圖支持嚮量機(CNDAG-SVM)。該方法引入複雜網絡理論中相似性測度概唸用以評定各樣本類型間的分離性質,併以平均相似性測度作為有效度量樣本類型可區分程度的測度對有嚮無環圖葉節點類型進行排序,依次提取對應二元分類器構造較優有嚮無環圖拓撲結構,緩解誤差纍積效應的同時提高瞭結構上層節點的容錯能力,穫得較高的正確識彆率。利用跼部均值分解方法提取乘積函數(Production Function,PF)分量波峰繫數、峭度繫數及能量構造特徵嚮量,將其輸入 CNDAG-SVM分類器中用于區分滾動軸承的故障類型與縯化程度。對滾動軸承內圈故障、外圈故障及滾動體故障振動信號的分析結果錶明,該方法能準確有效識彆故障類型與其縯化程度,較之傳統多元分類支持嚮量機具有更高的識彆精度和效率。
침대곤동축승고장여기연화정도조합류형수량대,일반모식식별방법난이괄응적문제,제출기우복잡망락우화적유향무배도지지향량궤(CNDAG-SVM)。해방법인입복잡망락이론중상사성측도개념용이평정각양본류형간적분리성질,병이평균상사성측도작위유효도량양본류형가구분정도적측도대유향무배도협절점류형진행배서,의차제취대응이원분류기구조교우유향무배도탁복결구,완해오차루적효응적동시제고료결구상층절점적용착능력,획득교고적정학식별솔。이용국부균치분해방법제취승적함수(Production Function,PF)분량파봉계수、초도계수급능량구조특정향량,장기수입 CNDAG-SVM분류기중용우구분곤동축승적고장류형여연화정도。대곤동축승내권고장、외권고장급곤동체고장진동신호적분석결과표명,해방법능준학유효식별고장류형여기연화정도,교지전통다원분류지지향량궤구유경고적식별정도화효솔。
Due to the large amount of crossed combinations of fault patterns and evolution stages of rolling bearings, the general patterns recognition method is difficult to adapt to multivariate process.In view of the problem,an optimized directed acyclic graph support vector machine (DAG-SVM)based on complex network (CN)was proposed.According to the similarity measure in complex network theory,the separating characters of samples were evaluated,and the nodes of directed acyclic graph were sequenced by the average similarity measure which was calculated as the criterion for distinguishing degree of samples.Then the corresponding binary support vector machines were selected to construct an optimal directed acyclic graph,to achieve high correction identification ratio by alleviating error accumulation and improving fault tolerance of the upper nodes.Feature vectors were constructed of the crest factor,kurtosis coefficient and energy of product functions,obtained by local mean decomposition.And then the feature vectors were served as input parameters of CNDAG-SVM classifier to sort fault patterns and evolution stages of rolling bearings.By analyzing the vibration signal acquired from the bearings with inner-race,outer-race or elements faults,the experimental results indicate that the proposed method can recognize the fault types and evolution grades effectively and has higher accuracy and productiveness than traditional multi-class support vector machines.