计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2015年
6期
247-253
,共7页
定位-库存问题%失灵风险%客户满意度%多目标%非支配排序遗传算法
定位-庫存問題%失靈風險%客戶滿意度%多目標%非支配排序遺傳算法
정위-고존문제%실령풍험%객호만의도%다목표%비지배배서유전산법
Location-Inventory Problem(LIP)%disruption risk%customer satisfaction degree%multiple-objective%Non-dominated Sort Genetic Algorithm( NSGA)
为实现物流系统整体优化,考虑失灵风险、随机需求、设施容量约束、提前期等因素,以系统总成本最小与客户满意度最高为目标,建立一个两级物流网络的随机多目标定位-库存问题模型。该模型是一个双目标的非线性离散混合整数规划模型。在此基础上,设计一种改进的基于小生境技术的非支配排序多目标遗传算法。实验结果表明,该算法可得模型的Pateto前沿解集,与标准非支配排序遗传算法相比,改进算法在收敛代数及解的数量和分布上均具有明显优势。在实际应用中,决策者可根据需要及偏好在Pateto候选解中选择合适的优化决策方案。
為實現物流繫統整體優化,攷慮失靈風險、隨機需求、設施容量約束、提前期等因素,以繫統總成本最小與客戶滿意度最高為目標,建立一箇兩級物流網絡的隨機多目標定位-庫存問題模型。該模型是一箇雙目標的非線性離散混閤整數規劃模型。在此基礎上,設計一種改進的基于小生境技術的非支配排序多目標遺傳算法。實驗結果錶明,該算法可得模型的Pateto前沿解集,與標準非支配排序遺傳算法相比,改進算法在收斂代數及解的數量和分佈上均具有明顯優勢。在實際應用中,決策者可根據需要及偏好在Pateto候選解中選擇閤適的優化決策方案。
위실현물류계통정체우화,고필실령풍험、수궤수구、설시용량약속、제전기등인소,이계통총성본최소여객호만의도최고위목표,건립일개량급물류망락적수궤다목표정위-고존문제모형。해모형시일개쌍목표적비선성리산혼합정수규화모형。재차기출상,설계일충개진적기우소생경기술적비지배배서다목표유전산법。실험결과표명,해산법가득모형적Pateto전연해집,여표준비지배배서유전산법상비,개진산법재수렴대수급해적수량화분포상균구유명현우세。재실제응용중,결책자가근거수요급편호재Pateto후선해중선택합괄적우화결책방안。
In order to promote the logistics system,a joint Location-Inventory Problem( LIP) model with lead-time is built,considering disruption risks,stochastic demands,facility capacity constraints. The goal is to minimize system cost and maximize customer satisfaction. A discrete nonlinear mixed integer programming model with 2 goals is built to describe the problem. An improved Non-dominated Sort Genetic Algorithm ( NSGA ) based on niching technology is worked out to solve the model. Numerical example and control experiment indicate that the Pateto front solution set can be obtained and the improved NSGA has obvious advantages compared with standard NSGA. In practical application, optimal decision schemes can be selected from a cluster of Pateto solutions according to the preferences and actual needs of decision makers.