计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2015年
6期
195-200
,共6页
侧抑制网络%二维直方图%Otsu算法%阈值选取%阈值分割
側抑製網絡%二維直方圖%Otsu算法%閾值選取%閾值分割
측억제망락%이유직방도%Otsu산법%역치선취%역치분할
lateral inhibition network%two-dimensional histogram%Otsu algorithm%threshold selection%threshold segmentation
传统二维Otsu阈值分割算法未考虑人类视觉特性,分割结果不符合人眼视觉感受。为此,提出一种二维Otsu算法与侧抑制网络相结合的分割算法。该算法从基于人类视觉系统的侧抑制网络出发,利用侧抑制网络增强中心,抑制周围的特性,通过侧抑制网络处理原始图像,得到侧抑制图像,构建基于像素的灰度信息和侧抑制信息的二维直方图,并采用类间最大方差作为最佳阈值的选取准则。实验结果表明,与传统的Otsu算法和二维Otsu算法等相比,该算法具有较好的对比度、光照强度适应性和间断拟合能力,并能提高对图像噪声的鲁棒性,获得更理想的分割结果。
傳統二維Otsu閾值分割算法未攷慮人類視覺特性,分割結果不符閤人眼視覺感受。為此,提齣一種二維Otsu算法與側抑製網絡相結閤的分割算法。該算法從基于人類視覺繫統的側抑製網絡齣髮,利用側抑製網絡增彊中心,抑製週圍的特性,通過側抑製網絡處理原始圖像,得到側抑製圖像,構建基于像素的灰度信息和側抑製信息的二維直方圖,併採用類間最大方差作為最佳閾值的選取準則。實驗結果錶明,與傳統的Otsu算法和二維Otsu算法等相比,該算法具有較好的對比度、光照彊度適應性和間斷擬閤能力,併能提高對圖像譟聲的魯棒性,穫得更理想的分割結果。
전통이유Otsu역치분할산법미고필인류시각특성,분할결과불부합인안시각감수。위차,제출일충이유Otsu산법여측억제망락상결합적분할산법。해산법종기우인류시각계통적측억제망락출발,이용측억제망락증강중심,억제주위적특성,통과측억제망락처리원시도상,득도측억제도상,구건기우상소적회도신식화측억제신식적이유직방도,병채용류간최대방차작위최가역치적선취준칙。실험결과표명,여전통적Otsu산법화이유Otsu산법등상비,해산법구유교호적대비도、광조강도괄응성화간단의합능력,병능제고대도상조성적로봉성,획득경이상적분할결과。
The traditional two-dimensional Otsu thresholding segmentation algorithms do not think about human vision characteristics and the result of segmentation can not match up to the visual perception of human eye. In order to solve this problem,an algorithm based on the two-dimensional Otsu algorithm and the lateral inhibition network is proposed. In this algorithm, the lateral inhibition network of human visual system that has the features of enhancing center and inhibiting surroundings is fully used. The lateral inhibition network is utilized to process the original picture and obtains the lateral inhibition picture. A two-dimensional histogram based on the gray information and lateral inhibition information of pixels is established. The maximum between-cluster variance is chosen as the criterion to select the optimal threshold. Experimental results show that this algorithm not only is well adapted to the contrast and illumination intensity, but also has the capacity for fitting the breaks compared with the traditional Otsu algorithm and two-dimensional Otsu algorithm. It improves the robustness to image noise and obtains more perfect segmentation results.