农业工程学报
農業工程學報
농업공정학보
2015年
11期
89-95
,共7页
王玄%李广%郭聪聪%韩文霆%姚小敏%孙瑜
王玄%李廣%郭聰聰%韓文霆%姚小敏%孫瑜
왕현%리엄%곽총총%한문정%요소민%손유
喷头%灌溉%优化%参数%摇臂式喷头%副喷嘴%喷灌均匀度%FLUENT模拟
噴頭%灌溉%優化%參數%搖臂式噴頭%副噴嘴%噴灌均勻度%FLUENT模擬
분두%관개%우화%삼수%요비식분두%부분취%분관균균도%FLUENT모의
nozzles%irrigation%optimization%parameter%impact sprinklers%sub-nozzle%sprinkler irrigation uniformity%FLUENT simulation
摇臂式喷头副喷嘴的主要作用是增加喷头近处的喷水量,从而提高喷头的喷灌均匀度,因此对摇臂式喷头副喷嘴的研究具有重要意义。该文采用流场模拟和试验相结合的方法对摇臂式喷头的副喷嘴结构参数进行了优化设计。首先采用逆向工程的设计方法,运用Pro/E建立了摇臂式喷头的三维结构,选择副喷嘴的仰角和位置为待优化参数,设计出9种副喷嘴结构的摇臂式喷头。运用Pro/E和HyperMesh软件建立了9种副喷嘴结构摇臂式喷头的三维内流道模型,利用CFD软件FLUENT对9种喷头的内流道进行三维模拟,运用快速成型技术加工出喷头样品进行试验验证,在矩形组合方式下运用4种插值方法(距离插值法、线性插值法、立方插值法和三次样条插值法)计算喷灌组合均匀度,并且利用Sprinkler3D 软件通过二维插值的方法建立了9种喷头的压力水量分布模型,对喷头喷洒均匀性进行评价。结果表明,6号喷头(副喷嘴位置参数为19.8 mm、仰角参数为18°)的模拟流量和速率较大,试验水量分布在2~12 m之间能够保持较好均匀性,且射程达到14 m以上,喷灌均匀度在压力为250和300 kPa下都达到80%以上。因此,副喷嘴位置参数19.8 mm、仰角参数18°为摇臂式喷头副喷嘴的最佳结构参数。该研究为摇臂式喷头结构设计和喷灌系统优化等提供参考。
搖臂式噴頭副噴嘴的主要作用是增加噴頭近處的噴水量,從而提高噴頭的噴灌均勻度,因此對搖臂式噴頭副噴嘴的研究具有重要意義。該文採用流場模擬和試驗相結閤的方法對搖臂式噴頭的副噴嘴結構參數進行瞭優化設計。首先採用逆嚮工程的設計方法,運用Pro/E建立瞭搖臂式噴頭的三維結構,選擇副噴嘴的仰角和位置為待優化參數,設計齣9種副噴嘴結構的搖臂式噴頭。運用Pro/E和HyperMesh軟件建立瞭9種副噴嘴結構搖臂式噴頭的三維內流道模型,利用CFD軟件FLUENT對9種噴頭的內流道進行三維模擬,運用快速成型技術加工齣噴頭樣品進行試驗驗證,在矩形組閤方式下運用4種插值方法(距離插值法、線性插值法、立方插值法和三次樣條插值法)計算噴灌組閤均勻度,併且利用Sprinkler3D 軟件通過二維插值的方法建立瞭9種噴頭的壓力水量分佈模型,對噴頭噴灑均勻性進行評價。結果錶明,6號噴頭(副噴嘴位置參數為19.8 mm、仰角參數為18°)的模擬流量和速率較大,試驗水量分佈在2~12 m之間能夠保持較好均勻性,且射程達到14 m以上,噴灌均勻度在壓力為250和300 kPa下都達到80%以上。因此,副噴嘴位置參數19.8 mm、仰角參數18°為搖臂式噴頭副噴嘴的最佳結構參數。該研究為搖臂式噴頭結構設計和噴灌繫統優化等提供參攷。
요비식분두부분취적주요작용시증가분두근처적분수량,종이제고분두적분관균균도,인차대요비식분두부분취적연구구유중요의의。해문채용류장모의화시험상결합적방법대요비식분두적부분취결구삼수진행료우화설계。수선채용역향공정적설계방법,운용Pro/E건립료요비식분두적삼유결구,선택부분취적앙각화위치위대우화삼수,설계출9충부분취결구적요비식분두。운용Pro/E화HyperMesh연건건립료9충부분취결구요비식분두적삼유내류도모형,이용CFD연건FLUENT대9충분두적내류도진행삼유모의,운용쾌속성형기술가공출분두양품진행시험험증,재구형조합방식하운용4충삽치방법(거리삽치법、선성삽치법、립방삽치법화삼차양조삽치법)계산분관조합균균도,병차이용Sprinkler3D 연건통과이유삽치적방법건립료9충분두적압력수량분포모형,대분두분쇄균균성진행평개。결과표명,6호분두(부분취위치삼수위19.8 mm、앙각삼수위18°)적모의류량화속솔교대,시험수량분포재2~12 m지간능구보지교호균균성,차사정체도14 m이상,분관균균도재압력위250화300 kPa하도체도80%이상。인차,부분취위치삼수19.8 mm、앙각삼수18°위요비식분두부분취적최가결구삼수。해연구위요비식분두결구설계화분관계통우화등제공삼고。
The chief function of sub-nozzle of impact sprinkler is to increase the near precipitation depth, thereby improving the uniformity of sprinkler irrigation. In this study, flow field simulation combined with experimental validation method was applied to optimize the key structural parameters (elevation angle and position) of impact sprinkler. Nine kinds of elevation angles and positions of sub-nozzle combinations were designed with the established three-dimensional structures of the impact sprinkler by Pro/E software. The three-dimensional inner flow channel model of impact sprinkler with nine kinds of sub-nozzle structure was established. The inner flow channel simulations of all kinds of impact sprinkler were performed by FLUENT of Computational Fluid Dynamics (CFD) software. Considering structural feature, the precision requirement, the procession quality, and the cost of product, the SLA RPT (Stereo lithography Apparatus Rapid Prototyping Technology) was selected to prototype the impact sprinkler with nine kinds of sub-nozzle. The nine kinds of models were processed into samples for experimental verification. Under the rectangular combinations, four interpolation methods (distance interpolation method, linear interpolation method, cubic interpolation method and cubic spline interpolation method) were used to calculate the Christiansen uniformity coefficient and nine kinds of water pressure distribution models were established by Sprinkler 3D software in two-dimensional interpolation method. The result showed that the impact sprinklers with sixth sub-nozzle (position parameter of 19.8 mm, the elevation angle parameter of 18°) performed more reliable. The study about sub-nozzle of impact sprinkler’s structural parameters improved the nozzle near water distribution effectively. Its flow rate of simulation was biggest. The yield of water distribution in 2-12 m could maintain good uniformity. And the sprinkler range of the sixth sub-nozzle was more than 14 m, better than before and increased by more than 2 m. The sprinkler irrigation uniformity was calculated with the four different interpolation methods and results were increased obviously. Under the pressure of 250 and 300 kPa (especially the pressure of 300 kPa), the Christiansen uniformity coefficient both was more than 80%, which was an increase of 4% and 5% above than before. With the increase of the pressure, Christiansen uniformity coefficient was still consistent generally. The structural parameters of sub-nozzle (position parameter of 19.8 mm and the elevation angle parameter of 18°) of impact sprinklers were more reasonable. This study provides valuable information for structural design of sub-nozzle, impact sprinkler and sprinkler system optimization.