铁道学报
鐵道學報
철도학보
2015年
6期
10-18
,共9页
张军%郭涛%孙帮成%周韶泽%兆文忠
張軍%郭濤%孫幫成%週韶澤%兆文忠
장군%곽도%손방성%주소택%조문충
高速列车%气动噪声%声压级%有限元-无限元法
高速列車%氣動譟聲%聲壓級%有限元-無限元法
고속열차%기동조성%성압급%유한원-무한원법
high-speed train%aerodynamic noise%sound pressure level%finite element-infinite element method
本文建立包括头车、尾车、中间车、受电弓、6个转向架在内的C R H3高速列车整车三维绕流流动的物理数学模型,用Fluent软件内大涡模型数值计算外部瞬态流场,得到时域Lighthill声源项,对时域声源项进行傅利叶变换得到频域声源项,用有限元‐无限元法计算高速列车车头及转向架、受电弓、车尾及转向架附近的气动噪声,得到高速列车主要气动噪声源的声压分布及特点。计算结果表明:受电弓弓头部附近气动噪声最大,而且具有更多高频噪声,300 km/h速度运行时其总声压级为156.3 dB ,受电弓底座也具有很高的声压级,并且具有较多的低频噪声;在车头及第一个转向架附近,转向架区域噪声明显高于车头鼻尖处,其总声压级分别为135.3 dB和129.7 dB;在车尾及最后一个转向架附近,车尾部噪声大于转向架区域噪声;总气动噪声声压级按受电弓滑板、受电弓底座、车尾部、第一个转向架、车头部逐次降低。通过与现有文献的对比分析,证明了本文计算结果的正确性。
本文建立包括頭車、尾車、中間車、受電弓、6箇轉嚮架在內的C R H3高速列車整車三維繞流流動的物理數學模型,用Fluent軟件內大渦模型數值計算外部瞬態流場,得到時域Lighthill聲源項,對時域聲源項進行傅利葉變換得到頻域聲源項,用有限元‐無限元法計算高速列車車頭及轉嚮架、受電弓、車尾及轉嚮架附近的氣動譟聲,得到高速列車主要氣動譟聲源的聲壓分佈及特點。計算結果錶明:受電弓弓頭部附近氣動譟聲最大,而且具有更多高頻譟聲,300 km/h速度運行時其總聲壓級為156.3 dB ,受電弓底座也具有很高的聲壓級,併且具有較多的低頻譟聲;在車頭及第一箇轉嚮架附近,轉嚮架區域譟聲明顯高于車頭鼻尖處,其總聲壓級分彆為135.3 dB和129.7 dB;在車尾及最後一箇轉嚮架附近,車尾部譟聲大于轉嚮架區域譟聲;總氣動譟聲聲壓級按受電弓滑闆、受電弓底座、車尾部、第一箇轉嚮架、車頭部逐次降低。通過與現有文獻的對比分析,證明瞭本文計算結果的正確性。
본문건립포괄두차、미차、중간차、수전궁、6개전향가재내적C R H3고속열차정차삼유요류류동적물리수학모형,용Fluent연건내대와모형수치계산외부순태류장,득도시역Lighthill성원항,대시역성원항진행부리협변환득도빈역성원항,용유한원‐무한원법계산고속열차차두급전향가、수전궁、차미급전향가부근적기동조성,득도고속열차주요기동조성원적성압분포급특점。계산결과표명:수전궁궁두부부근기동조성최대,이차구유경다고빈조성,300 km/h속도운행시기총성압급위156.3 dB ,수전궁저좌야구유흔고적성압급,병차구유교다적저빈조성;재차두급제일개전향가부근,전향가구역조성명현고우차두비첨처,기총성압급분별위135.3 dB화129.7 dB;재차미급최후일개전향가부근,차미부조성대우전향가구역조성;총기동조성성압급안수전궁활판、수전궁저좌、차미부、제일개전향가、차두부축차강저。통과여현유문헌적대비분석,증명료본문계산결과적정학성。
A three‐dimension computational fluid dynamics model including a head nose‐coach , a middle coach , a tail nose‐coach ,a pantograph and 6 bogies was built . The exterior transient fluid field was calculated using the large eddy simulation(LES) from Fluent software to obtain the time‐domain Lighthill acoustic source term . The time‐domain acoustic source term was transformed into frequency‐domain acoustic source term through Fourier transformation . A finite element‐infinite element model was used to calculate the aerodynamic noise a‐round the head nose‐coach and its bogie , the pantograph , the tail nose‐coach and its bogie , to gain the acous‐tic pressure distribution and the characteristics of the aerodynamic noise source of a high speed train . The cal‐culation results showed that maximum aerodynamic noise existed at the pantograph head slide plate where there was more high frequency noise .At the speed of 300 km/h ,the maximal sound pressure level(SPL) reached 156.3 dB .The pantograph base had high SPL as well where there was more low‐frequency noise .With respect to the head nose‐coach and the first bogie , the noise at the bogie was significantly higher than that at the nose position of head coach , with the maximal SPL reaching 135.3 dB and 129.7 dB respectively . On the contrary , the noise at the nose position of the end coachwas higher than that at last bogie . The total SPL of the aerody‐namic noise was progressively declining in the sequence of the pantograph head slide plate , pantograph base , the nose position of the end coach , the first bogie and the nose position of the head coach . T he validity of the calculation results presented in this paper has been confirmed by a comparative analysis with existing literature .