铁道学报
鐵道學報
철도학보
2015年
6期
79-87
,共9页
高速铁路%板式无砟轨道%非线性温度效应%温度翘曲%温度应力系数
高速鐵路%闆式無砟軌道%非線性溫度效應%溫度翹麯%溫度應力繫數
고속철로%판식무사궤도%비선성온도효응%온도교곡%온도응력계수
high-speed railway%ballastless track slab%non-linearity temperature effects%thermal warping%thermal stress coefficient
为了计算非线性温度场下高速铁路无砟轨道板的温度应力,把温度应力分解为轴向均匀温度、线性温度及非线性温度三部分进行求解,并以温度应力系数的形式表示这3种温度应力;根据轨道板温度应力的实际受力情况,对各种状态下的温度应力系数进行分析和计算,结果以表格的形式给出以便于应用查询;并以案例形式给出轨道板温度应力计算的过程。研究结果表明:每天不同时刻轨道板的轴向均匀温度应力由均值和幅值两部分组成,幅值部分与板表面的温度日变化幅值有关;采用定义简化的温度梯度代替等效非线性温度梯度产生的误差可忽略不计;轨道板的非线性温度内应力最大值仅可能出现在其上表面或下表面。
為瞭計算非線性溫度場下高速鐵路無砟軌道闆的溫度應力,把溫度應力分解為軸嚮均勻溫度、線性溫度及非線性溫度三部分進行求解,併以溫度應力繫數的形式錶示這3種溫度應力;根據軌道闆溫度應力的實際受力情況,對各種狀態下的溫度應力繫數進行分析和計算,結果以錶格的形式給齣以便于應用查詢;併以案例形式給齣軌道闆溫度應力計算的過程。研究結果錶明:每天不同時刻軌道闆的軸嚮均勻溫度應力由均值和幅值兩部分組成,幅值部分與闆錶麵的溫度日變化幅值有關;採用定義簡化的溫度梯度代替等效非線性溫度梯度產生的誤差可忽略不計;軌道闆的非線性溫度內應力最大值僅可能齣現在其上錶麵或下錶麵。
위료계산비선성온도장하고속철로무사궤도판적온도응력,파온도응력분해위축향균균온도、선성온도급비선성온도삼부분진행구해,병이온도응력계수적형식표시저3충온도응력;근거궤도판온도응력적실제수력정황,대각충상태하적온도응력계수진행분석화계산,결과이표격적형식급출이편우응용사순;병이안례형식급출궤도판온도응력계산적과정。연구결과표명:매천불동시각궤도판적축향균균온도응력유균치화폭치량부분조성,폭치부분여판표면적온도일변화폭치유관;채용정의간화적온도제도대체등효비선성온도제도산생적오차가홀략불계;궤도판적비선성온도내응력최대치부가능출현재기상표면혹하표면。
In order to calculate the thermal stress of ballastless track slab of high‐speed railway under the nonlin‐ear temperature field ,the stresses were broken down into three components:an axial uniform thermal stress , a linear warping stress and a nonlinear self‐equilibrating stress . The three thermal stresses were represented by stress coefficients . Based on the actual thermal stress of the track slab , the thermal stress coefficients under various conditions were analyzed and calculated . The calculated results of the temperature effects were given in the form of tables for the purpose of easy application and reference . T he process of the calculation of the ther‐mal stresses of the track slab was illustrated through a case study .It is indicated that the axial uniform thermal stress of the track slab under different moments of the day consisted of mean and variation around the mean . Variation was related to the daily temperature variation at the slab surface . When a simplified temperature gra‐dient is defined to replace the equivalent nonlinear temperature gradient , the resulting error is marginal and can be ignored . The maximum values of the nonlinear self‐equilibrating thermal stress either appeared on the top or the bottom of the track slab .