计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2015年
6期
1581-1585
,共5页
彭钢%贾振红%覃锡忠%杨杰%Nikola Kasabov
彭鋼%賈振紅%覃錫忠%楊傑%Nikola Kasabov
팽강%가진홍%담석충%양걸%Nikola Kasabov
自适应脉冲耦合神经网络%图像融合%Chan-Vese模型%差异图%变化检测
自適應脈遲耦閤神經網絡%圖像融閤%Chan-Vese模型%差異圖%變化檢測
자괄응맥충우합신경망락%도상융합%Chan-Vese모형%차이도%변화검측
adaptive PCNN%image fusion%Chan-Vese model%difference image%change detection
为获取保留图像信息较完好的差异图并得到更好的变化检测结果,提出一种基于自适应脉冲耦合神经网络(PC‐NN)和改进Chan‐Vese (C‐V)模型的非监督的不同时相遥感图像的变化检测算法。用差值法、比值法对两幅遥感图像进行差异图获取;用自适应PCNN图像融合算法对两幅差异图进行融合,获取保留图像信息较好的差异图;用基于改进C‐V模型的分割算法对融合后的差异图进行分割,得到变化检测结果图。实验结果表明,该算法具有很好的变化检测效果,总检测精度较高。
為穫取保留圖像信息較完好的差異圖併得到更好的變化檢測結果,提齣一種基于自適應脈遲耦閤神經網絡(PC‐NN)和改進Chan‐Vese (C‐V)模型的非鑑督的不同時相遙感圖像的變化檢測算法。用差值法、比值法對兩幅遙感圖像進行差異圖穫取;用自適應PCNN圖像融閤算法對兩幅差異圖進行融閤,穫取保留圖像信息較好的差異圖;用基于改進C‐V模型的分割算法對融閤後的差異圖進行分割,得到變化檢測結果圖。實驗結果錶明,該算法具有很好的變化檢測效果,總檢測精度較高。
위획취보류도상신식교완호적차이도병득도경호적변화검측결과,제출일충기우자괄응맥충우합신경망락(PC‐NN)화개진Chan‐Vese (C‐V)모형적비감독적불동시상요감도상적변화검측산법。용차치법、비치법대량폭요감도상진행차이도획취;용자괄응PCNN도상융합산법대량폭차이도진행융합,획취보류도상신식교호적차이도;용기우개진C‐V모형적분할산법대융합후적차이도진행분할,득도변화검측결과도。실험결과표명,해산법구유흔호적변화검측효과,총검측정도교고。
To obtain difference image retaining image information much better ,and to gain better change detection results ,an unsupervised change detection algorithm in remote sensing images based on adaptive pulse coupled neural network (PCNN) and improved Chan‐Vese model was proposed .Firstly ,the difference images were generated by using the difference method and ratio method on two remote sensing images .Then ,the results of the subtraction method and the ratio method were fused by using the adaptive PCNN algorithm to obtain complementary information .The change regions were separated from the merged difference image by using the image segmentation algorithm based on improved C‐V model to gain change detection results figure .The ex‐perimental results show that the algorithm has good effect on change detection and it has higher detection precision .